lang-bootstrap/06/lpeglabel/lptree.c
Dawid Sobczak e6b88d5a0f Add stage 06: Lua bootstrap
The goal of stage 06 is to try parse zig synax in lua. I pulled in
lpeglable 1.2.0 and parser-gen off github to get started. All of this
needs to be cleaned up rather soon.

Lua boostraps using tcc and musl from the previous stage. Since musl
0.6.0 doesn't support dynamic linking this build of lua doesn't support
shared libraries. I couldn't easily patch musl with dlopen and friends
so instead I link statically and call deps with c api.
2023-07-06 12:32:47 +01:00

1363 lines
38 KiB
C

/*
** $Id: lptree.c,v 1.21 2015/09/28 17:01:25 roberto Exp $
** Copyright 2013, Lua.org & PUC-Rio (see 'lpeg.html' for license)
*/
#include <ctype.h>
#include <limits.h>
#include <string.h>
#include "lua.h"
#include "lauxlib.h"
#include "lptypes.h"
#include "lpcap.h"
#include "lpcode.h"
#include "lpprint.h"
#include "lptree.h"
/* number of siblings for each tree */
const byte numsiblings[] = {
0, 0, 0, /* char, set, any */
0, 0, /* true, false */
1, /* rep */
2, 2, /* seq, choice */
1, 1, /* not, and */
0, 0, 2, 1, /* call, opencall, rule, grammar */
1, /* behind */
1, 1, /* capture, runtime capture */
0, 2 /* labeled failure throw, recovery */
};
static TTree *newgrammar (lua_State *L, int arg);
/*
** returns a reasonable name for value at index 'idx' on the stack
*/
static const char *val2str (lua_State *L, int idx) {
const char *k = lua_tostring(L, idx);
if (k != NULL)
return lua_pushfstring(L, "%s", k);
else
return lua_pushfstring(L, "(a %s)", luaL_typename(L, idx));
}
/*
** Fix a TOpenCall into a TCall node, using table 'postable' to
** translate a key to its rule address in the tree. Raises an
** error if key does not exist.
*/
static void fixonecall (lua_State *L, int postable, TTree *g, TTree *t) {
int n;
lua_rawgeti(L, -1, t->key); /* get rule's name */
lua_gettable(L, postable); /* query name in position table */
n = lua_tonumber(L, -1); /* get (absolute) position */
lua_pop(L, 1); /* remove position */
if (n == 0) { /* no position? */
lua_rawgeti(L, -1, t->key); /* get rule's name again */
luaL_error(L, "rule '%s' undefined in given grammar", val2str(L, -1));
}
t->tag = TCall;
t->u.s.ps = n - (t - g); /* position relative to node */
assert(sib2(t)->tag == TRule);
sib2(t)->key = t->key;
}
/*
** Transform left associative constructions into right
** associative ones, for sequence and choice; that is:
** (t11 + t12) + t2 => t11 + (t12 + t2)
** (t11 * t12) * t2 => t11 * (t12 * t2)
** (that is, Op (Op t11 t12) t2 => Op t11 (Op t12 t2))
*/
static void correctassociativity (TTree *tree) {
TTree *t1 = sib1(tree);
assert(tree->tag == TChoice || tree->tag == TSeq);
while (t1->tag == tree->tag) {
int n1size = tree->u.s.ps - 1; /* t1 == Op t11 t12 */
int n11size = t1->u.s.ps - 1;
int n12size = n1size - n11size - 1;
memmove(sib1(tree), sib1(t1), n11size * sizeof(TTree)); /* move t11 */
tree->u.s.ps = n11size + 1;
sib2(tree)->tag = tree->tag;
sib2(tree)->u.s.ps = n12size + 1;
}
}
/*
** Make final adjustments in a tree. Fix open calls in tree 't',
** making them refer to their respective rules or raising appropriate
** errors (if not inside a grammar). Correct associativity of associative
** constructions (making them right associative). Assume that tree's
** ktable is at the top of the stack (for error messages).
*/
static void finalfix (lua_State *L, int postable, TTree *g, TTree *t) {
tailcall:
switch (t->tag) {
case TGrammar: /* subgrammars were already fixed */
return;
case TOpenCall: {
if (g != NULL) /* inside a grammar? */
fixonecall(L, postable, g, t);
else { /* open call outside grammar */
lua_rawgeti(L, -1, t->key);
luaL_error(L, "rule '%s' used outside a grammar", val2str(L, -1));
}
break;
}
case TSeq: case TChoice:
correctassociativity(t);
break;
}
switch (numsiblings[t->tag]) {
case 1: /* finalfix(L, postable, g, sib1(t)); */
t = sib1(t); goto tailcall;
case 2:
finalfix(L, postable, g, sib1(t));
t = sib2(t); goto tailcall; /* finalfix(L, postable, g, sib2(t)); */
default: assert(numsiblings[t->tag] == 0); break;
}
}
/*
** {===================================================================
** KTable manipulation
**
** - The ktable of a pattern 'p' can be shared by other patterns that
** contain 'p' and no other constants. Because of this sharing, we
** should not add elements to a 'ktable' unless it was freshly created
** for the new pattern.
**
** - The maximum index in a ktable is USHRT_MAX, because trees and
** patterns use unsigned shorts to store those indices.
** ====================================================================
*/
/*
** Create a new 'ktable' to the pattern at the top of the stack.
*/
static void newktable (lua_State *L, int n) {
lua_createtable(L, n, 0); /* create a fresh table */
lua_setuservalue(L, -2); /* set it as 'ktable' for pattern */
}
/*
** Add element 'idx' to 'ktable' of pattern at the top of the stack;
** Return index of new element.
** If new element is nil, does not add it to table (as it would be
** useless) and returns 0, as ktable[0] is always nil.
*/
static int addtoktable (lua_State *L, int idx) {
if (lua_isnil(L, idx)) /* nil value? */
return 0;
else {
int n;
lua_getuservalue(L, -1); /* get ktable from pattern */
n = lua_rawlen(L, -1);
if (n >= USHRT_MAX)
luaL_error(L, "too many Lua values in pattern");
lua_pushvalue(L, idx); /* element to be added */
lua_rawseti(L, -2, ++n);
lua_pop(L, 1); /* remove 'ktable' */
return n;
}
}
/*
** Return the number of elements in the ktable at 'idx'.
** In Lua 5.2/5.3, default "environment" for patterns is nil, not
** a table. Treat it as an empty table. In Lua 5.1, assumes that
** the environment has no numeric indices (len == 0)
*/
static int ktablelen (lua_State *L, int idx) {
if (!lua_istable(L, idx)) return 0;
else return lua_rawlen(L, idx);
}
/*
** Concatentate the contents of table 'idx1' into table 'idx2'.
** (Assume that both indices are negative.)
** Return the original length of table 'idx2' (or 0, if no
** element was added, as there is no need to correct any index).
*/
static int concattable (lua_State *L, int idx1, int idx2) {
int i;
int n1 = ktablelen(L, idx1);
int n2 = ktablelen(L, idx2);
if (n1 + n2 > USHRT_MAX)
luaL_error(L, "too many Lua values in pattern");
if (n1 == 0) return 0; /* nothing to correct */
for (i = 1; i <= n1; i++) {
lua_rawgeti(L, idx1, i);
lua_rawseti(L, idx2 - 1, n2 + i); /* correct 'idx2' */
}
return n2;
}
/*
** When joining 'ktables', constants from one of the subpatterns must
** be renumbered; 'correctkeys' corrects their indices (adding 'n'
** to each of them)
*/
static void correctkeys (TTree *tree, int n) {
if (n == 0) return; /* no correction? */
tailcall:
switch (tree->tag) {
case TOpenCall: case TCall: case TRunTime: case TRule: {
if (tree->key > 0)
tree->key += n;
break;
}
case TCapture: {
if (tree->key > 0 && tree->cap != Carg && tree->cap != Cnum)
tree->key += n;
break;
}
default: break;
}
switch (numsiblings[tree->tag]) {
case 1: /* correctkeys(sib1(tree), n); */
tree = sib1(tree); goto tailcall;
case 2:
correctkeys(sib1(tree), n);
tree = sib2(tree); goto tailcall; /* correctkeys(sib2(tree), n); */
default: assert(numsiblings[tree->tag] == 0); break;
}
}
/*
** Join the ktables from p1 and p2 the ktable for the new pattern at the
** top of the stack, reusing them when possible.
*/
static void joinktables (lua_State *L, int p1, TTree *t2, int p2) {
int n1, n2;
lua_getuservalue(L, p1); /* get ktables */
lua_getuservalue(L, p2);
n1 = ktablelen(L, -2);
n2 = ktablelen(L, -1);
if (n1 == 0 && n2 == 0) /* are both tables empty? */
lua_pop(L, 2); /* nothing to be done; pop tables */
else if (n2 == 0 || lp_equal(L, -2, -1)) { /* 2nd table empty or equal? */
lua_pop(L, 1); /* pop 2nd table */
lua_setuservalue(L, -2); /* set 1st ktable into new pattern */
}
else if (n1 == 0) { /* first table is empty? */
lua_setuservalue(L, -3); /* set 2nd table into new pattern */
lua_pop(L, 1); /* pop 1st table */
}
else {
lua_createtable(L, n1 + n2, 0); /* create ktable for new pattern */
/* stack: new p; ktable p1; ktable p2; new ktable */
concattable(L, -3, -1); /* from p1 into new ktable */
concattable(L, -2, -1); /* from p2 into new ktable */
lua_setuservalue(L, -4); /* new ktable becomes 'p' environment */
lua_pop(L, 2); /* pop other ktables */
correctkeys(t2, n1); /* correction for indices from p2 */
}
}
/*
** copy 'ktable' of element 'idx' to new tree (on top of stack)
*/
static void copyktable (lua_State *L, int idx) {
lua_getuservalue(L, idx);
lua_setuservalue(L, -2);
}
/*
** merge 'ktable' from 'stree' at stack index 'idx' into 'ktable'
** from tree at the top of the stack, and correct corresponding
** tree.
*/
static void mergektable (lua_State *L, int idx, TTree *stree) {
int n;
lua_getuservalue(L, -1); /* get ktables */
lua_getuservalue(L, idx);
n = concattable(L, -1, -2);
lua_pop(L, 2); /* remove both ktables */
correctkeys(stree, n);
}
/*
** Create a new 'ktable' to the pattern at the top of the stack, adding
** all elements from pattern 'p' (if not 0) plus element 'idx' to it.
** Return index of new element.
*/
static int addtonewktable (lua_State *L, int p, int idx) {
newktable(L, 1);
if (p)
mergektable(L, p, NULL);
return addtoktable(L, idx);
}
/* }====================================================== */
/*
** {======================================================
** Tree generation
** =======================================================
*/
/*
** In 5.2, could use 'luaL_testudata'...
*/
static int testpattern (lua_State *L, int idx) {
if (lua_touserdata(L, idx)) { /* value is a userdata? */
if (lua_getmetatable(L, idx)) { /* does it have a metatable? */
luaL_getmetatable(L, PATTERN_T);
if (lua_rawequal(L, -1, -2)) { /* does it have the correct mt? */
lua_pop(L, 2); /* remove both metatables */
return 1;
}
}
}
return 0;
}
static Pattern *getpattern (lua_State *L, int idx) {
return (Pattern *)luaL_checkudata(L, idx, PATTERN_T);
}
static int getsize (lua_State *L, int idx) {
return (lua_rawlen(L, idx) - sizeof(Pattern)) / sizeof(TTree) + 1;
}
static TTree *gettree (lua_State *L, int idx, int *len) {
Pattern *p = getpattern(L, idx);
if (len)
*len = getsize(L, idx);
return p->tree;
}
/*
** create a pattern. Set its uservalue (the 'ktable') equal to its
** metatable. (It could be any empty sequence; the metatable is at
** hand here, so we use it.)
*/
static TTree *newtree (lua_State *L, int len) {
size_t size = (len - 1) * sizeof(TTree) + sizeof(Pattern);
Pattern *p = (Pattern *)lua_newuserdata(L, size);
luaL_getmetatable(L, PATTERN_T);
lua_pushvalue(L, -1);
lua_setuservalue(L, -3);
lua_setmetatable(L, -2);
p->code = NULL; p->codesize = 0;
return p->tree;
}
static TTree *newleaf (lua_State *L, int tag) {
TTree *tree = newtree(L, 1);
tree->tag = tag;
return tree;
}
static TTree *newcharset (lua_State *L) {
TTree *tree = newtree(L, bytes2slots(CHARSETSIZE) + 1);
tree->tag = TSet;
loopset(i, treebuffer(tree)[i] = 0);
return tree;
}
/*
** add to tree a sequence where first sibling is 'sib' (with size
** 'sibsize'); returns position for second sibling
*/
static TTree *seqaux (TTree *tree, TTree *sib, int sibsize) {
tree->tag = TSeq; tree->u.s.ps = sibsize + 1;
memcpy(sib1(tree), sib, sibsize * sizeof(TTree));
return sib2(tree);
}
/*
** Build a sequence of 'n' nodes, each with tag 'tag' and 'u.n' got
** from the array 's' (or 0 if array is NULL). (TSeq is binary, so it
** must build a sequence of sequence of sequence...)
*/
static void fillseq (TTree *tree, int tag, int n, const char *s) {
int i;
for (i = 0; i < n - 1; i++) { /* initial n-1 copies of Seq tag; Seq ... */
tree->tag = TSeq; tree->u.s.ps = 2;
sib1(tree)->tag = tag;
sib1(tree)->u.n = s ? (byte)s[i] : 0;
tree = sib2(tree);
}
tree->tag = tag; /* last one does not need TSeq */
tree->u.n = s ? (byte)s[i] : 0;
}
/*
** Numbers as patterns:
** 0 == true (always match); n == TAny repeated 'n' times;
** -n == not (TAny repeated 'n' times)
*/
static TTree *numtree (lua_State *L, int n) {
if (n == 0)
return newleaf(L, TTrue);
else {
TTree *tree, *nd;
if (n > 0)
tree = nd = newtree(L, 2 * n - 1);
else { /* negative: code it as !(-n) */
n = -n;
tree = newtree(L, 2 * n);
tree->tag = TNot;
nd = sib1(tree);
}
fillseq(nd, TAny, n, NULL); /* sequence of 'n' any's */
return tree;
}
}
/*
** Convert value at index 'idx' to a pattern
*/
static TTree *getpatt (lua_State *L, int idx, int *len) {
TTree *tree;
switch (lua_type(L, idx)) {
case LUA_TSTRING: {
size_t slen;
const char *s = lua_tolstring(L, idx, &slen); /* get string */
if (slen == 0) /* empty? */
tree = newleaf(L, TTrue); /* always match */
else {
tree = newtree(L, 2 * (slen - 1) + 1);
fillseq(tree, TChar, slen, s); /* sequence of 'slen' chars */
}
break;
}
case LUA_TNUMBER: {
int n = lua_tointeger(L, idx);
tree = numtree(L, n);
break;
}
case LUA_TBOOLEAN: {
tree = (lua_toboolean(L, idx) ? newleaf(L, TTrue) : newleaf(L, TFalse));
break;
}
case LUA_TTABLE: {
tree = newgrammar(L, idx);
break;
}
case LUA_TFUNCTION: {
tree = newtree(L, 2);
tree->tag = TRunTime;
tree->key = addtonewktable(L, 0, idx);
sib1(tree)->tag = TTrue;
break;
}
default: {
return gettree(L, idx, len);
}
}
lua_replace(L, idx); /* put new tree into 'idx' slot */
if (len)
*len = getsize(L, idx);
return tree;
}
/*
** create a new tree, whith a new root and one sibling.
** Sibling must be on the Lua stack, at index 1.
*/
static TTree *newroot1sib (lua_State *L, int tag) {
int s1;
TTree *tree1 = getpatt(L, 1, &s1);
TTree *tree = newtree(L, 1 + s1); /* create new tree */
tree->tag = tag;
memcpy(sib1(tree), tree1, s1 * sizeof(TTree));
copyktable(L, 1);
return tree;
}
/*
** create a new tree, whith a new root and 2 siblings.
** Siblings must be on the Lua stack, first one at index 1.
*/
static TTree *newroot2sib (lua_State *L, int tag) {
int s1, s2;
TTree *tree1 = getpatt(L, 1, &s1);
TTree *tree2 = getpatt(L, 2, &s2);
TTree *tree = newtree(L, 1 + s1 + s2); /* create new tree */
tree->tag = tag;
tree->u.s.ps = 1 + s1;
memcpy(sib1(tree), tree1, s1 * sizeof(TTree));
memcpy(sib2(tree), tree2, s2 * sizeof(TTree));
joinktables(L, 1, sib2(tree), 2);
return tree;
}
/* labeled failure begin */
static TTree *newthrowleaf (lua_State *L, int lab) {
TTree *tree = newtree(L, 1);
tree->tag = TThrow;
tree->u.label = lab;
return tree;
}
static TTree *newrootlab2sib (lua_State *L, int tag) {
int s1, s2;
TTree *tree1 = getpatt(L, 1, &s1);
TTree *tree2 = getpatt(L, 2, &s2);
TTree *tree = newtree(L, bytes2slots(LABELSETSIZE) + 1 + s1 + s2); /* create new tree */
tree->tag = tag;
tree->u.s.ps = 1 + s1;
tree->u.s.plab = 1 + s1 + s2;
memcpy(sib1(tree), tree1, s1 * sizeof(TTree));
memcpy(sib2(tree), tree2, s2 * sizeof(TTree));
loopset(i, treelabelset(tree)[i] = 0);
joinktables(L, 1, sib2(tree), 2);
return tree;
}
/* labeled failure end */
static int lp_P (lua_State *L) {
luaL_checkany(L, 1);
getpatt(L, 1, NULL);
lua_settop(L, 1);
return 1;
}
/*
** sequence operator; optimizations:
** false x => false, x true => x, true x => x
** (cannot do x . false => false because x may have runtime captures)
*/
static int lp_seq (lua_State *L) {
TTree *tree1 = getpatt(L, 1, NULL);
TTree *tree2 = getpatt(L, 2, NULL);
if (tree1->tag == TFalse || tree2->tag == TTrue)
lua_pushvalue(L, 1); /* false . x == false, x . true = x */
else if (tree1->tag == TTrue)
lua_pushvalue(L, 2); /* true . x = x */
else
newroot2sib(L, TSeq);
return 1;
}
/*
** choice operator; optimizations:
** charset / charset => charset
** true / x => true, x / false => x, false / x => x
** (x / true is not equivalent to true)
*/
static int lp_choice (lua_State *L) {
Charset st1, st2;
TTree *t1 = getpatt(L, 1, NULL);
TTree *t2 = getpatt(L, 2, NULL);
if (tocharset(t1, &st1) && tocharset(t2, &st2)) {
TTree *t = newcharset(L);
loopset(i, treebuffer(t)[i] = st1.cs[i] | st2.cs[i]);
}
else if (nofail(t1) || t2->tag == TFalse)
lua_pushvalue(L, 1); /* true / x => true, x / false => x */
else if (t1->tag == TFalse)
lua_pushvalue(L, 2); /* false / x => x */
else
newroot2sib(L, TChoice);
return 1;
}
/*
** p^n
*/
static int lp_star (lua_State *L) {
int size1;
int n = (int)luaL_checkinteger(L, 2);
TTree *tree1 = getpatt(L, 1, &size1);
if (n >= 0) { /* seq tree1 (seq tree1 ... (seq tree1 (rep tree1))) */
TTree *tree = newtree(L, (n + 1) * (size1 + 1));
if (nullable(tree1))
luaL_error(L, "loop body may accept empty string");
while (n--) /* repeat 'n' times */
tree = seqaux(tree, tree1, size1);
tree->tag = TRep;
memcpy(sib1(tree), tree1, size1 * sizeof(TTree));
}
else { /* choice (seq tree1 ... choice tree1 true ...) true */
TTree *tree;
n = -n;
/* size = (choice + seq + tree1 + true) * n, but the last has no seq */
tree = newtree(L, n * (size1 + 3) - 1);
for (; n > 1; n--) { /* repeat (n - 1) times */
tree->tag = TChoice; tree->u.s.ps = n * (size1 + 3) - 2;
sib2(tree)->tag = TTrue;
tree = sib1(tree);
tree = seqaux(tree, tree1, size1);
}
tree->tag = TChoice; tree->u.s.ps = size1 + 1;
sib2(tree)->tag = TTrue;
memcpy(sib1(tree), tree1, size1 * sizeof(TTree));
}
copyktable(L, 1);
return 1;
}
/*
** #p == &p
*/
static int lp_and (lua_State *L) {
newroot1sib(L, TAnd);
return 1;
}
/*
** -p == !p
*/
static int lp_not (lua_State *L) {
newroot1sib(L, TNot);
return 1;
}
/*
** [t1 - t2] == Seq (Not t2) t1
** If t1 and t2 are charsets, make their difference.
*/
static int lp_sub (lua_State *L) {
Charset st1, st2;
int s1, s2;
TTree *t1 = getpatt(L, 1, &s1);
TTree *t2 = getpatt(L, 2, &s2);
if (tocharset(t1, &st1) && tocharset(t2, &st2)) {
TTree *t = newcharset(L);
loopset(i, treebuffer(t)[i] = st1.cs[i] & ~st2.cs[i]);
}
else {
TTree *tree = newtree(L, 2 + s1 + s2);
tree->tag = TSeq; /* sequence of... */
tree->u.s.ps = 2 + s2;
sib1(tree)->tag = TNot; /* ...not... */
memcpy(sib1(sib1(tree)), t2, s2 * sizeof(TTree)); /* ...t2 */
memcpy(sib2(tree), t1, s1 * sizeof(TTree)); /* ... and t1 */
joinktables(L, 1, sib1(tree), 2);
}
return 1;
}
static int lp_set (lua_State *L) {
size_t l;
const char *s = luaL_checklstring(L, 1, &l);
TTree *tree = newcharset(L);
while (l--) {
setchar(treebuffer(tree), (byte)(*s));
s++;
}
return 1;
}
static int lp_range (lua_State *L) {
int arg;
int top = lua_gettop(L);
TTree *tree = newcharset(L);
for (arg = 1; arg <= top; arg++) {
int c;
size_t l;
const char *r = luaL_checklstring(L, arg, &l);
luaL_argcheck(L, l == 2, arg, "range must have two characters");
for (c = (byte)r[0]; c <= (byte)r[1]; c++)
setchar(treebuffer(tree), c);
}
return 1;
}
/*
** Look-behind predicate
*/
static int lp_behind (lua_State *L) {
TTree *tree;
TTree *tree1 = getpatt(L, 1, NULL);
int n = fixedlen(tree1);
luaL_argcheck(L, n >= 0, 1, "pattern may not have fixed length");
luaL_argcheck(L, !hascaptures(tree1), 1, "pattern have captures");
luaL_argcheck(L, n <= MAXBEHIND, 1, "pattern too long to look behind");
tree = newroot1sib(L, TBehind);
tree->u.n = n;
return 1;
}
/* labeled failure begin */
/*
** Throws a label
*/
static int lp_throw (lua_State *L) {
int label = luaL_checkinteger(L, -1);
luaL_argcheck(L, label >= 1 && label < MAXLABELS, -1, "the number of a label must be between 1 and 255");
newthrowleaf(L, label);
return 1;
}
/*
** labeled recovery function
*/
static int lp_recovery (lua_State *L) {
int n = lua_gettop(L);
TTree *tree = newrootlab2sib(L, TRecov);
luaL_argcheck(L, n >= 3, 3, "non-nil value expected");
if (n == 2) { /* catches fail as default */
/*setlabel(treelabelset(tree), LFAIL); recovery does not catch regular fail */
} else {
int i;
for (i = 3; i <= n; i++) {
int d = luaL_checkinteger(L, i);
luaL_argcheck(L, d >= 1 && d < MAXLABELS, i, "the number of a label must be between 1 and 255");
setlabel(treelabelset(tree), (byte)d);
}
}
return 1;
}
/* labeled failure end */
/*
** Create a non-terminal
*/
static int lp_V (lua_State *L) {
TTree *tree = newleaf(L, TOpenCall);
luaL_argcheck(L, !lua_isnoneornil(L, 1), 1, "non-nil value expected");
tree->key = addtonewktable(L, 0, 1);
return 1;
}
/*
** Create a tree for a non-empty capture, with a body and
** optionally with an associated Lua value (at index 'labelidx' in the
** stack)
*/
static int capture_aux (lua_State *L, int cap, int labelidx) {
TTree *tree = newroot1sib(L, TCapture);
tree->cap = cap;
tree->key = (labelidx == 0) ? 0 : addtonewktable(L, 1, labelidx);
return 1;
}
/*
** Fill a tree with an empty capture, using an empty (TTrue) sibling.
*/
static TTree *auxemptycap (TTree *tree, int cap) {
tree->tag = TCapture;
tree->cap = cap;
sib1(tree)->tag = TTrue;
return tree;
}
/*
** Create a tree for an empty capture
*/
static TTree *newemptycap (lua_State *L, int cap) {
return auxemptycap(newtree(L, 2), cap);
}
/*
** Create a tree for an empty capture with an associated Lua value
*/
static TTree *newemptycapkey (lua_State *L, int cap, int idx) {
TTree *tree = auxemptycap(newtree(L, 2), cap);
tree->key = addtonewktable(L, 0, idx);
return tree;
}
/*
** Captures with syntax p / v
** (function capture, query capture, string capture, or number capture)
*/
static int lp_divcapture (lua_State *L) {
switch (lua_type(L, 2)) {
case LUA_TFUNCTION: return capture_aux(L, Cfunction, 2);
case LUA_TTABLE: return capture_aux(L, Cquery, 2);
case LUA_TSTRING: return capture_aux(L, Cstring, 2);
case LUA_TNUMBER: {
int n = lua_tointeger(L, 2);
TTree *tree = newroot1sib(L, TCapture);
luaL_argcheck(L, 0 <= n && n <= SHRT_MAX, 1, "invalid number");
tree->cap = Cnum;
tree->key = n;
return 1;
}
default: return luaL_argerror(L, 2, "invalid replacement value");
}
}
static int lp_substcapture (lua_State *L) {
return capture_aux(L, Csubst, 0);
}
static int lp_tablecapture (lua_State *L) {
return capture_aux(L, Ctable, 0);
}
static int lp_groupcapture (lua_State *L) {
if (lua_isnoneornil(L, 2))
return capture_aux(L, Cgroup, 0);
else
return capture_aux(L, Cgroup, 2);
}
static int lp_foldcapture (lua_State *L) {
luaL_checktype(L, 2, LUA_TFUNCTION);
return capture_aux(L, Cfold, 2);
}
static int lp_simplecapture (lua_State *L) {
return capture_aux(L, Csimple, 0);
}
static int lp_poscapture (lua_State *L) {
newemptycap(L, Cposition);
return 1;
}
static int lp_argcapture (lua_State *L) {
int n = (int)luaL_checkinteger(L, 1);
TTree *tree = newemptycap(L, Carg);
tree->key = n;
luaL_argcheck(L, 0 < n && n <= SHRT_MAX, 1, "invalid argument index");
return 1;
}
static int lp_backref (lua_State *L) {
luaL_checkany(L, 1);
newemptycapkey(L, Cbackref, 1);
return 1;
}
/*
** Constant capture
*/
static int lp_constcapture (lua_State *L) {
int i;
int n = lua_gettop(L); /* number of values */
if (n == 0) /* no values? */
newleaf(L, TTrue); /* no capture */
else if (n == 1)
newemptycapkey(L, Cconst, 1); /* single constant capture */
else { /* create a group capture with all values */
TTree *tree = newtree(L, 1 + 3 * (n - 1) + 2);
newktable(L, n); /* create a 'ktable' for new tree */
tree->tag = TCapture;
tree->cap = Cgroup;
tree->key = 0;
tree = sib1(tree);
for (i = 1; i <= n - 1; i++) {
tree->tag = TSeq;
tree->u.s.ps = 3; /* skip TCapture and its sibling */
auxemptycap(sib1(tree), Cconst);
sib1(tree)->key = addtoktable(L, i);
tree = sib2(tree);
}
auxemptycap(tree, Cconst);
tree->key = addtoktable(L, i);
}
return 1;
}
static int lp_matchtime (lua_State *L) {
TTree *tree;
luaL_checktype(L, 2, LUA_TFUNCTION);
tree = newroot1sib(L, TRunTime);
tree->key = addtonewktable(L, 1, 2);
return 1;
}
/* }====================================================== */
/*
** {======================================================
** Grammar - Tree generation
** =======================================================
*/
/*
** push on the stack the index and the pattern for the
** initial rule of grammar at index 'arg' in the stack;
** also add that index into position table.
*/
static void getfirstrule (lua_State *L, int arg, int postab) {
lua_rawgeti(L, arg, 1); /* access first element */
if (lua_isstring(L, -1)) { /* is it the name of initial rule? */
lua_pushvalue(L, -1); /* duplicate it to use as key */
lua_gettable(L, arg); /* get associated rule */
}
else {
lua_pushinteger(L, 1); /* key for initial rule */
lua_insert(L, -2); /* put it before rule */
}
if (!testpattern(L, -1)) { /* initial rule not a pattern? */
if (lua_isnil(L, -1))
luaL_error(L, "grammar has no initial rule");
else
luaL_error(L, "initial rule '%s' is not a pattern", lua_tostring(L, -2));
}
lua_pushvalue(L, -2); /* push key */
lua_pushinteger(L, 1); /* push rule position (after TGrammar) */
lua_settable(L, postab); /* insert pair at position table */
}
/*
** traverse grammar at index 'arg', pushing all its keys and patterns
** into the stack. Create a new table (before all pairs key-pattern) to
** collect all keys and their associated positions in the final tree
** (the "position table").
** Return the number of rules and (in 'totalsize') the total size
** for the new tree.
*/
static int collectrules (lua_State *L, int arg, int *totalsize) {
int n = 1; /* to count number of rules */
int postab = lua_gettop(L) + 1; /* index of position table */
int size; /* accumulator for total size */
lua_newtable(L); /* create position table */
getfirstrule(L, arg, postab);
size = 2 + getsize(L, postab + 2); /* TGrammar + TRule + rule */
lua_pushnil(L); /* prepare to traverse grammar table */
while (lua_next(L, arg) != 0) {
if (lua_tonumber(L, -2) == 1 ||
lp_equal(L, -2, postab + 1)) { /* initial rule? */
lua_pop(L, 1); /* remove value (keep key for lua_next) */
continue;
}
if (!testpattern(L, -1)) /* value is not a pattern? */
luaL_error(L, "rule '%s' is not a pattern", val2str(L, -2));
luaL_checkstack(L, LUA_MINSTACK, "grammar has too many rules");
lua_pushvalue(L, -2); /* push key (to insert into position table) */
lua_pushinteger(L, size);
lua_settable(L, postab);
size += 1 + getsize(L, -1); /* update size */
lua_pushvalue(L, -2); /* push key (for next lua_next) */
n++;
}
*totalsize = size + 1; /* TTrue to finish list of rules */
return n;
}
static void buildgrammar (lua_State *L, TTree *grammar, int frule, int n) {
int i;
TTree *nd = sib1(grammar); /* auxiliary pointer to traverse the tree */
for (i = 0; i < n; i++) { /* add each rule into new tree */
int ridx = frule + 2*i + 1; /* index of i-th rule */
int rulesize;
TTree *rn = gettree(L, ridx, &rulesize);
nd->tag = TRule;
nd->key = 0;
nd->cap = i; /* rule number */
nd->u.s.ps = rulesize + 1; /* point to next rule */
memcpy(sib1(nd), rn, rulesize * sizeof(TTree)); /* copy rule */
mergektable(L, ridx, sib1(nd)); /* merge its ktable into new one */
nd = sib2(nd); /* move to next rule */
}
nd->tag = TTrue; /* finish list of rules */
}
/*
** Check whether a tree has potential infinite loops
*/
static int checkloops (TTree *tree) {
tailcall:
if (tree->tag == TRep && nullable(sib1(tree)))
return 1;
else if (tree->tag == TGrammar)
return 0; /* sub-grammars already checked */
else {
switch (numsiblings[tree->tag]) {
case 1: /* return checkloops(sib1(tree)); */
tree = sib1(tree); goto tailcall;
case 2:
if (checkloops(sib1(tree))) return 1;
/* else return checkloops(sib2(tree)); */
tree = sib2(tree); goto tailcall;
default: assert(numsiblings[tree->tag] == 0); return 0;
}
}
}
static int verifyerror (lua_State *L, int *passed, int npassed) {
int i, j;
for (i = npassed - 1; i >= 0; i--) { /* search for a repetition */
for (j = i - 1; j >= 0; j--) {
if (passed[i] == passed[j]) {
lua_rawgeti(L, -1, passed[i]); /* get rule's key */
return luaL_error(L, "rule '%s' may be left recursive", val2str(L, -1));
}
}
}
return luaL_error(L, "too many left calls in grammar");
}
/*
** Check whether a rule can be left recursive; raise an error in that
** case; otherwise return 1 iff pattern is nullable.
** The return value is used to check sequences, where the second pattern
** is only relevant if the first is nullable.
** Parameter 'nb' works as an accumulator, to allow tail calls in
** choices. ('nb' true makes function returns true.)
** Assume ktable at the top of the stack.
*/
static int verifyrule (lua_State *L, TTree *tree, int *passed, int npassed,
int nb) {
tailcall:
switch (tree->tag) {
case TChar: case TSet: case TAny:
case TFalse: case TThrow: /* labeled failure */
return nb; /* cannot pass from here */
case TTrue:
case TBehind: /* look-behind cannot have calls */
return 1;
case TNot: case TAnd: case TRep:
/* return verifyrule(L, sib1(tree), passed, npassed, 1); */
tree = sib1(tree); nb = 1; goto tailcall;
case TCapture: case TRunTime:
/* return verifyrule(L, sib1(tree), passed, npassed, nb); */
tree = sib1(tree); goto tailcall;
case TCall:
/* return verifyrule(L, sib2(tree), passed, npassed, nb); */
tree = sib2(tree); goto tailcall;
case TSeq: /* only check 2nd child if first is nb */
if (!verifyrule(L, sib1(tree), passed, npassed, 0))
return nb;
/* else return verifyrule(L, sib2(tree), passed, npassed, nb); */
tree = sib2(tree); goto tailcall;
case TChoice: case TRecov: /* must check both children */ /* labeled failure */
nb = verifyrule(L, sib1(tree), passed, npassed, nb);
/* return verifyrule(L, sib2(tree), passed, npassed, nb); */
tree = sib2(tree); goto tailcall;
case TRule:
if (npassed >= MAXRULES)
return verifyerror(L, passed, npassed);
else {
passed[npassed++] = tree->key;
/* return verifyrule(L, sib1(tree), passed, npassed); */
tree = sib1(tree); goto tailcall;
}
case TGrammar:
return nullable(tree); /* sub-grammar cannot be left recursive */
default: assert(0); return 0;
}
}
static void verifygrammar (lua_State *L, TTree *grammar) {
int passed[MAXRULES];
TTree *rule;
/* check left-recursive rules */
for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
if (rule->key == 0) continue; /* unused rule */
verifyrule(L, sib1(rule), passed, 0, 0);
}
assert(rule->tag == TTrue);
/* check infinite loops inside rules */
for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) {
if (rule->key == 0) continue; /* unused rule */
if (checkloops(sib1(rule))) {
lua_rawgeti(L, -1, rule->key); /* get rule's key */
luaL_error(L, "empty loop in rule '%s'", val2str(L, -1));
}
}
assert(rule->tag == TTrue);
}
/*
** Give a name for the initial rule if it is not referenced
*/
static void initialrulename (lua_State *L, TTree *grammar, int frule) {
if (sib1(grammar)->key == 0) { /* initial rule is not referenced? */
int n = lua_rawlen(L, -1) + 1; /* index for name */
lua_pushvalue(L, frule); /* rule's name */
lua_rawseti(L, -2, n); /* ktable was on the top of the stack */
sib1(grammar)->key = n;
}
}
static TTree *newgrammar (lua_State *L, int arg) {
int treesize;
int frule = lua_gettop(L) + 2; /* position of first rule's key */
int n = collectrules(L, arg, &treesize);
TTree *g = newtree(L, treesize);
luaL_argcheck(L, n <= MAXRULES, arg, "grammar has too many rules");
g->tag = TGrammar; g->u.n = n;
lua_newtable(L); /* create 'ktable' */
lua_setuservalue(L, -2);
buildgrammar(L, g, frule, n);
lua_getuservalue(L, -1); /* get 'ktable' for new tree */
finalfix(L, frule - 1, g, sib1(g));
initialrulename(L, g, frule);
verifygrammar(L, g);
lua_pop(L, 1); /* remove 'ktable' */
lua_insert(L, -(n * 2 + 2)); /* move new table to proper position */
lua_pop(L, n * 2 + 1); /* remove position table + rule pairs */
return g; /* new table at the top of the stack */
}
/* }====================================================== */
static Instruction *prepcompile (lua_State *L, Pattern *p, int idx) {
lua_getuservalue(L, idx); /* push 'ktable' (may be used by 'finalfix') */
finalfix(L, 0, NULL, p->tree);
lua_pop(L, 1); /* remove 'ktable' */
return compile(L, p);
}
static int lp_printtree (lua_State *L) {
TTree *tree = getpatt(L, 1, NULL);
int c = lua_toboolean(L, 2);
if (c) {
lua_getuservalue(L, 1); /* push 'ktable' (may be used by 'finalfix') */
finalfix(L, 0, NULL, tree);
lua_pop(L, 1); /* remove 'ktable' */
}
printktable(L, 1);
printtree(tree, 0);
return 0;
}
static int lp_printcode (lua_State *L) {
Pattern *p = getpattern(L, 1);
printktable(L, 1);
if (p->code == NULL) /* not compiled yet? */
prepcompile(L, p, 1);
printpatt(p->code, p->codesize);
return 0;
}
/*
** Get the initial position for the match, interpreting negative
** values from the end of the subject
*/
static size_t initposition (lua_State *L, size_t len) {
lua_Integer ii = luaL_optinteger(L, 3, 1);
if (ii > 0) { /* positive index? */
if ((size_t)ii <= len) /* inside the string? */
return (size_t)ii - 1; /* return it (corrected to 0-base) */
else return len; /* crop at the end */
}
else { /* negative index */
if ((size_t)(-ii) <= len) /* inside the string? */
return len - ((size_t)(-ii)); /* return position from the end */
else return 0; /* crop at the beginning */
}
}
/*
** Main match function
*/
static int lp_match (lua_State *L) {
Capture capture[INITCAPSIZE];
const char *r;
size_t l;
Pattern *p = (getpatt(L, 1, NULL), getpattern(L, 1));
Instruction *code = (p->code != NULL) ? p->code : prepcompile(L, p, 1);
const char *s = luaL_checklstring(L, SUBJIDX, &l);
size_t i = initposition(L, l);
int ptop = lua_gettop(L);
byte labelf; /* labeled failure */
const char *sfail = NULL; /* labeled failure */
lua_pushnil(L); /* initialize subscache */
lua_pushlightuserdata(L, capture); /* initialize caplistidx */
lua_getuservalue(L, 1); /* initialize penvidx */
r = match(L, s, s + i, s + l, code, capture, ptop, &labelf, &sfail); /* labeled failure */
if (r == NULL) { /* labeled failure begin */
lua_pushnil(L);
lua_pushinteger(L, labelf);
lua_pushstring(L, sfail); /* Pushing the subject where the failure occurred */
return 3;
} /* labeled failure end */
return getcaptures(L, s, r, ptop);
}
/*
** {======================================================
** Library creation and functions not related to matching
** =======================================================
*/
/* maximum limit for stack size */
#define MAXLIM (INT_MAX / 100)
static int lp_setmax (lua_State *L) {
lua_Integer lim = luaL_checkinteger(L, 1);
luaL_argcheck(L, 0 < lim && lim <= MAXLIM, 1, "out of range");
lua_settop(L, 1);
lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX);
return 0;
}
static int lp_version (lua_State *L) {
lua_pushstring(L, VERSION);
return 1;
}
static int lp_type (lua_State *L) {
if (testpattern(L, 1))
lua_pushliteral(L, "pattern");
else
lua_pushnil(L);
return 1;
}
int lp_gc (lua_State *L) {
Pattern *p = getpattern(L, 1);
realloccode(L, p, 0); /* delete code block */
return 0;
}
static void createcat (lua_State *L, const char *catname, int (catf) (int)) {
TTree *t = newcharset(L);
int i;
for (i = 0; i <= UCHAR_MAX; i++)
if (catf(i)) setchar(treebuffer(t), i);
lua_setfield(L, -2, catname);
}
static int lp_locale (lua_State *L) {
if (lua_isnoneornil(L, 1)) {
lua_settop(L, 0);
lua_createtable(L, 0, 12);
}
else {
luaL_checktype(L, 1, LUA_TTABLE);
lua_settop(L, 1);
}
createcat(L, "alnum", isalnum);
createcat(L, "alpha", isalpha);
createcat(L, "cntrl", iscntrl);
createcat(L, "digit", isdigit);
createcat(L, "graph", isgraph);
createcat(L, "lower", islower);
createcat(L, "print", isprint);
createcat(L, "punct", ispunct);
createcat(L, "space", isspace);
createcat(L, "upper", isupper);
createcat(L, "xdigit", isxdigit);
return 1;
}
static struct luaL_Reg pattreg[] = {
{"ptree", lp_printtree},
{"pcode", lp_printcode},
{"match", lp_match},
{"B", lp_behind},
{"V", lp_V},
{"C", lp_simplecapture},
{"Cc", lp_constcapture},
{"Cmt", lp_matchtime},
{"Cb", lp_backref},
{"Carg", lp_argcapture},
{"Cp", lp_poscapture},
{"Cs", lp_substcapture},
{"Ct", lp_tablecapture},
{"Cf", lp_foldcapture},
{"Cg", lp_groupcapture},
{"P", lp_P},
{"S", lp_set},
{"R", lp_range},
{"locale", lp_locale},
{"version", lp_version},
{"setmaxstack", lp_setmax},
{"type", lp_type},
{"T", lp_throw}, /* labeled failure throw */
{"Rec", lp_recovery}, /* labeled failure choice */
{NULL, NULL}
};
static struct luaL_Reg metareg[] = {
{"__mul", lp_seq},
{"__add", lp_choice},
{"__pow", lp_star},
{"__gc", lp_gc},
{"__len", lp_and},
{"__div", lp_divcapture},
{"__unm", lp_not},
{"__sub", lp_sub},
{NULL, NULL}
};
int luaopen_lpeglabel (lua_State *L); /* labeled failure */
int luaopen_lpeglabel (lua_State *L) { /* labeled failure */
luaL_newmetatable(L, PATTERN_T);
lua_pushnumber(L, MAXBACK); /* initialize maximum backtracking */
lua_setfield(L, LUA_REGISTRYINDEX, MAXSTACKIDX);
luaL_setfuncs(L, metareg, 0);
luaL_newlib(L, pattreg);
lua_pushvalue(L, -1);
lua_setfield(L, -3, "__index");
return 1;
}
/* }====================================================== */