Add stage 06: Lua bootstrap

The goal of stage 06 is to try parse zig synax in lua. I pulled in
lpeglable 1.2.0 and parser-gen off github to get started. All of this
needs to be cleaned up rather soon.

Lua boostraps using tcc and musl from the previous stage. Since musl
0.6.0 doesn't support dynamic linking this build of lua doesn't support
shared libraries. I couldn't easily patch musl with dlopen and friends
so instead I link statically and call deps with c api.
This commit is contained in:
Dawid Sobczak 2023-07-06 11:48:59 +01:00
parent 2ae045cf8a
commit e6b88d5a0f
170 changed files with 72518 additions and 2 deletions

View file

@ -0,0 +1,824 @@
-- $Id: math.lua,v 1.78 2016/11/07 13:11:28 roberto Exp $
-- See Copyright Notice in file all.lua
print("testing numbers and math lib")
local minint = math.mininteger
local maxint = math.maxinteger
local intbits = math.floor(math.log(maxint, 2) + 0.5) + 1
assert((1 << intbits) == 0)
assert(minint == 1 << (intbits - 1))
assert(maxint == minint - 1)
-- number of bits in the mantissa of a floating-point number
local floatbits = 24
do
local p = 2.0^floatbits
while p < p + 1.0 do
p = p * 2.0
floatbits = floatbits + 1
end
end
local function isNaN (x)
return (x ~= x)
end
assert(isNaN(0/0))
assert(not isNaN(1/0))
do
local x = 2.0^floatbits
assert(x > x - 1.0 and x == x + 1.0)
print(string.format("%d-bit integers, %d-bit (mantissa) floats",
intbits, floatbits))
end
assert(math.type(0) == "integer" and math.type(0.0) == "float"
and math.type("10") == nil)
local function checkerror (msg, f, ...)
local s, err = pcall(f, ...)
assert(not s and string.find(err, msg))
end
local msgf2i = "number.* has no integer representation"
-- float equality
function eq (a,b,limit)
if not limit then
if floatbits >= 50 then limit = 1E-11
else limit = 1E-5
end
end
-- a == b needed for +inf/-inf
return a == b or math.abs(a-b) <= limit
end
-- equality with types
function eqT (a,b)
return a == b and math.type(a) == math.type(b)
end
-- basic float notation
assert(0e12 == 0 and .0 == 0 and 0. == 0 and .2e2 == 20 and 2.E-1 == 0.2)
do
local a,b,c = "2", " 3e0 ", " 10 "
assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0)
assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string')
assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ")
assert(c%a == 0 and a^b == 08)
a = 0
assert(a == -a and 0 == -0)
end
do
local x = -1
local mz = 0/x -- minus zero
t = {[0] = 10, 20, 30, 40, 50}
assert(t[mz] == t[0] and t[-0] == t[0])
end
do -- tests for 'modf'
local a,b = math.modf(3.5)
assert(a == 3.0 and b == 0.5)
a,b = math.modf(-2.5)
assert(a == -2.0 and b == -0.5)
a,b = math.modf(-3e23)
assert(a == -3e23 and b == 0.0)
a,b = math.modf(3e35)
assert(a == 3e35 and b == 0.0)
a,b = math.modf(-1/0) -- -inf
assert(a == -1/0 and b == 0.0)
a,b = math.modf(1/0) -- inf
assert(a == 1/0 and b == 0.0)
a,b = math.modf(0/0) -- NaN
assert(isNaN(a) and isNaN(b))
a,b = math.modf(3) -- integer argument
assert(eqT(a, 3) and eqT(b, 0.0))
a,b = math.modf(minint)
assert(eqT(a, minint) and eqT(b, 0.0))
end
assert(math.huge > 10e30)
assert(-math.huge < -10e30)
-- integer arithmetic
assert(minint < minint + 1)
assert(maxint - 1 < maxint)
assert(0 - minint == minint)
assert(minint * minint == 0)
assert(maxint * maxint * maxint == maxint)
-- testing floor division and conversions
for _, i in pairs{-16, -15, -3, -2, -1, 0, 1, 2, 3, 15} do
for _, j in pairs{-16, -15, -3, -2, -1, 1, 2, 3, 15} do
for _, ti in pairs{0, 0.0} do -- try 'i' as integer and as float
for _, tj in pairs{0, 0.0} do -- try 'j' as integer and as float
local x = i + ti
local y = j + tj
assert(i//j == math.floor(i/j))
end
end
end
end
assert(1//0.0 == 1/0)
assert(-1 // 0.0 == -1/0)
assert(eqT(3.5 // 1.5, 2.0))
assert(eqT(3.5 // -1.5, -3.0))
assert(maxint // maxint == 1)
assert(maxint // 1 == maxint)
assert((maxint - 1) // maxint == 0)
assert(maxint // (maxint - 1) == 1)
assert(minint // minint == 1)
assert(minint // minint == 1)
assert((minint + 1) // minint == 0)
assert(minint // (minint + 1) == 1)
assert(minint // 1 == minint)
assert(minint // -1 == -minint)
assert(minint // -2 == 2^(intbits - 2))
assert(maxint // -1 == -maxint)
-- negative exponents
do
assert(2^-3 == 1 / 2^3)
assert(eq((-3)^-3, 1 / (-3)^3))
for i = -3, 3 do -- variables avoid constant folding
for j = -3, 3 do
-- domain errors (0^(-n)) are not portable
if not _port or i ~= 0 or j > 0 then
assert(eq(i^j, 1 / i^(-j)))
end
end
end
end
-- comparison between floats and integers (border cases)
if floatbits < intbits then
assert(2.0^floatbits == (1 << floatbits))
assert(2.0^floatbits - 1.0 == (1 << floatbits) - 1.0)
assert(2.0^floatbits - 1.0 ~= (1 << floatbits))
-- float is rounded, int is not
assert(2.0^floatbits + 1.0 ~= (1 << floatbits) + 1)
else -- floats can express all integers with full accuracy
assert(maxint == maxint + 0.0)
assert(maxint - 1 == maxint - 1.0)
assert(minint + 1 == minint + 1.0)
assert(maxint ~= maxint - 1.0)
end
assert(maxint + 0.0 == 2.0^(intbits - 1) - 1.0)
assert(minint + 0.0 == minint)
assert(minint + 0.0 == -2.0^(intbits - 1))
-- order between floats and integers
assert(1 < 1.1); assert(not (1 < 0.9))
assert(1 <= 1.1); assert(not (1 <= 0.9))
assert(-1 < -0.9); assert(not (-1 < -1.1))
assert(1 <= 1.1); assert(not (-1 <= -1.1))
assert(-1 < -0.9); assert(not (-1 < -1.1))
assert(-1 <= -0.9); assert(not (-1 <= -1.1))
assert(minint <= minint + 0.0)
assert(minint + 0.0 <= minint)
assert(not (minint < minint + 0.0))
assert(not (minint + 0.0 < minint))
assert(maxint < minint * -1.0)
assert(maxint <= minint * -1.0)
do
local fmaxi1 = 2^(intbits - 1)
assert(maxint < fmaxi1)
assert(maxint <= fmaxi1)
assert(not (fmaxi1 <= maxint))
assert(minint <= -2^(intbits - 1))
assert(-2^(intbits - 1) <= minint)
end
if floatbits < intbits then
print("testing order (floats cannot represent all integers)")
local fmax = 2^floatbits
local ifmax = fmax | 0
assert(fmax < ifmax + 1)
assert(fmax - 1 < ifmax)
assert(-(fmax - 1) > -ifmax)
assert(not (fmax <= ifmax - 1))
assert(-fmax > -(ifmax + 1))
assert(not (-fmax >= -(ifmax - 1)))
assert(fmax/2 - 0.5 < ifmax//2)
assert(-(fmax/2 - 0.5) > -ifmax//2)
assert(maxint < 2^intbits)
assert(minint > -2^intbits)
assert(maxint <= 2^intbits)
assert(minint >= -2^intbits)
else
print("testing order (floats can represent all integers)")
assert(maxint < maxint + 1.0)
assert(maxint < maxint + 0.5)
assert(maxint - 1.0 < maxint)
assert(maxint - 0.5 < maxint)
assert(not (maxint + 0.0 < maxint))
assert(maxint + 0.0 <= maxint)
assert(not (maxint < maxint + 0.0))
assert(maxint + 0.0 <= maxint)
assert(maxint <= maxint + 0.0)
assert(not (maxint + 1.0 <= maxint))
assert(not (maxint + 0.5 <= maxint))
assert(not (maxint <= maxint - 1.0))
assert(not (maxint <= maxint - 0.5))
assert(minint < minint + 1.0)
assert(minint < minint + 0.5)
assert(minint <= minint + 0.5)
assert(minint - 1.0 < minint)
assert(minint - 1.0 <= minint)
assert(not (minint + 0.0 < minint))
assert(not (minint + 0.5 < minint))
assert(not (minint < minint + 0.0))
assert(minint + 0.0 <= minint)
assert(minint <= minint + 0.0)
assert(not (minint + 1.0 <= minint))
assert(not (minint + 0.5 <= minint))
assert(not (minint <= minint - 1.0))
end
do
local NaN = 0/0
assert(not (NaN < 0))
assert(not (NaN > minint))
assert(not (NaN <= -9))
assert(not (NaN <= maxint))
assert(not (NaN < maxint))
assert(not (minint <= NaN))
assert(not (minint < NaN))
end
-- avoiding errors at compile time
local function checkcompt (msg, code)
checkerror(msg, assert(load(code)))
end
checkcompt("divide by zero", "return 2 // 0")
checkcompt(msgf2i, "return 2.3 >> 0")
checkcompt(msgf2i, ("return 2.0^%d & 1"):format(intbits - 1))
checkcompt("field 'huge'", "return math.huge << 1")
checkcompt(msgf2i, ("return 1 | 2.0^%d"):format(intbits - 1))
checkcompt(msgf2i, "return 2.3 ~ '0.0'")
-- testing overflow errors when converting from float to integer (runtime)
local function f2i (x) return x | x end
checkerror(msgf2i, f2i, math.huge) -- +inf
checkerror(msgf2i, f2i, -math.huge) -- -inf
checkerror(msgf2i, f2i, 0/0) -- NaN
if floatbits < intbits then
-- conversion tests when float cannot represent all integers
assert(maxint + 1.0 == maxint + 0.0)
assert(minint - 1.0 == minint + 0.0)
checkerror(msgf2i, f2i, maxint + 0.0)
assert(f2i(2.0^(intbits - 2)) == 1 << (intbits - 2))
assert(f2i(-2.0^(intbits - 2)) == -(1 << (intbits - 2)))
assert((2.0^(floatbits - 1) + 1.0) // 1 == (1 << (floatbits - 1)) + 1)
-- maximum integer representable as a float
local mf = maxint - (1 << (floatbits - intbits)) + 1
assert(f2i(mf + 0.0) == mf) -- OK up to here
mf = mf + 1
assert(f2i(mf + 0.0) ~= mf) -- no more representable
else
-- conversion tests when float can represent all integers
assert(maxint + 1.0 > maxint)
assert(minint - 1.0 < minint)
assert(f2i(maxint + 0.0) == maxint)
checkerror("no integer rep", f2i, maxint + 1.0)
checkerror("no integer rep", f2i, minint - 1.0)
end
-- 'minint' should be representable as a float no matter the precision
assert(f2i(minint + 0.0) == minint)
-- testing numeric strings
assert("2" + 1 == 3)
assert("2 " + 1 == 3)
assert(" -2 " + 1 == -1)
assert(" -0xa " + 1 == -9)
-- Literal integer Overflows (new behavior in 5.3.3)
do
-- no overflows
assert(eqT(tonumber(tostring(maxint)), maxint))
assert(eqT(tonumber(tostring(minint)), minint))
-- add 1 to last digit as a string (it cannot be 9...)
local function incd (n)
local s = string.format("%d", n)
s = string.gsub(s, "%d$", function (d)
assert(d ~= '9')
return string.char(string.byte(d) + 1)
end)
return s
end
-- 'tonumber' with overflow by 1
assert(eqT(tonumber(incd(maxint)), maxint + 1.0))
assert(eqT(tonumber(incd(minint)), minint - 1.0))
-- large numbers
assert(eqT(tonumber("1"..string.rep("0", 30)), 1e30))
assert(eqT(tonumber("-1"..string.rep("0", 30)), -1e30))
-- hexa format still wraps around
assert(eqT(tonumber("0x1"..string.rep("0", 30)), 0))
-- lexer in the limits
assert(minint == load("return " .. minint)())
assert(eqT(maxint, load("return " .. maxint)()))
assert(eqT(10000000000000000000000.0, 10000000000000000000000))
assert(eqT(-10000000000000000000000.0, -10000000000000000000000))
end
-- testing 'tonumber'
-- 'tonumber' with numbers
assert(tonumber(3.4) == 3.4)
assert(eqT(tonumber(3), 3))
assert(eqT(tonumber(maxint), maxint) and eqT(tonumber(minint), minint))
assert(tonumber(1/0) == 1/0)
-- 'tonumber' with strings
assert(tonumber("0") == 0)
assert(tonumber("") == nil)
assert(tonumber(" ") == nil)
assert(tonumber("-") == nil)
assert(tonumber(" -0x ") == nil)
assert(tonumber{} == nil)
assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and
tonumber'.01' == 0.01 and tonumber'-1.' == -1 and
tonumber'+1.' == 1)
assert(tonumber'+ 0.01' == nil and tonumber'+.e1' == nil and
tonumber'1e' == nil and tonumber'1.0e+' == nil and
tonumber'.' == nil)
assert(tonumber('-012') == -010-2)
assert(tonumber('-1.2e2') == - - -120)
assert(tonumber("0xffffffffffff") == (1 << (4*12)) - 1)
assert(tonumber("0x"..string.rep("f", (intbits//4))) == -1)
assert(tonumber("-0x"..string.rep("f", (intbits//4))) == 1)
-- testing 'tonumber' with base
assert(tonumber(' 001010 ', 2) == 10)
assert(tonumber(' 001010 ', 10) == 001010)
assert(tonumber(' -1010 ', 2) == -10)
assert(tonumber('10', 36) == 36)
assert(tonumber(' -10 ', 36) == -36)
assert(tonumber(' +1Z ', 36) == 36 + 35)
assert(tonumber(' -1z ', 36) == -36 + -35)
assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15)))))))
assert(tonumber(string.rep('1', (intbits - 2)), 2) + 1 == 2^(intbits - 2))
assert(tonumber('ffffFFFF', 16)+1 == (1 << 32))
assert(tonumber('0ffffFFFF', 16)+1 == (1 << 32))
assert(tonumber('-0ffffffFFFF', 16) - 1 == -(1 << 40))
for i = 2,36 do
local i2 = i * i
local i10 = i2 * i2 * i2 * i2 * i2 -- i^10
assert(tonumber('\t10000000000\t', i) == i10)
end
if not _soft then
-- tests with very long numerals
assert(tonumber("0x"..string.rep("f", 13)..".0") == 2.0^(4*13) - 1)
assert(tonumber("0x"..string.rep("f", 150)..".0") == 2.0^(4*150) - 1)
assert(tonumber("0x"..string.rep("f", 300)..".0") == 2.0^(4*300) - 1)
assert(tonumber("0x"..string.rep("f", 500)..".0") == 2.0^(4*500) - 1)
assert(tonumber('0x3.' .. string.rep('0', 1000)) == 3)
assert(tonumber('0x' .. string.rep('0', 1000) .. 'a') == 10)
assert(tonumber('0x0.' .. string.rep('0', 13).."1") == 2.0^(-4*14))
assert(tonumber('0x0.' .. string.rep('0', 150).."1") == 2.0^(-4*151))
assert(tonumber('0x0.' .. string.rep('0', 300).."1") == 2.0^(-4*301))
assert(tonumber('0x0.' .. string.rep('0', 500).."1") == 2.0^(-4*501))
assert(tonumber('0xe03' .. string.rep('0', 1000) .. 'p-4000') == 3587.0)
assert(tonumber('0x.' .. string.rep('0', 1000) .. '74p4004') == 0x7.4)
end
-- testing 'tonumber' for invalid formats
local function f (...)
if select('#', ...) == 1 then
return (...)
else
return "***"
end
end
assert(f(tonumber('fFfa', 15)) == nil)
assert(f(tonumber('099', 8)) == nil)
assert(f(tonumber('1\0', 2)) == nil)
assert(f(tonumber('', 8)) == nil)
assert(f(tonumber(' ', 9)) == nil)
assert(f(tonumber(' ', 9)) == nil)
assert(f(tonumber('0xf', 10)) == nil)
assert(f(tonumber('inf')) == nil)
assert(f(tonumber(' INF ')) == nil)
assert(f(tonumber('Nan')) == nil)
assert(f(tonumber('nan')) == nil)
assert(f(tonumber(' ')) == nil)
assert(f(tonumber('')) == nil)
assert(f(tonumber('1 a')) == nil)
assert(f(tonumber('1 a', 2)) == nil)
assert(f(tonumber('1\0')) == nil)
assert(f(tonumber('1 \0')) == nil)
assert(f(tonumber('1\0 ')) == nil)
assert(f(tonumber('e1')) == nil)
assert(f(tonumber('e 1')) == nil)
assert(f(tonumber(' 3.4.5 ')) == nil)
-- testing 'tonumber' for invalid hexadecimal formats
assert(tonumber('0x') == nil)
assert(tonumber('x') == nil)
assert(tonumber('x3') == nil)
assert(tonumber('0x3.3.3') == nil) -- two decimal points
assert(tonumber('00x2') == nil)
assert(tonumber('0x 2') == nil)
assert(tonumber('0 x2') == nil)
assert(tonumber('23x') == nil)
assert(tonumber('- 0xaa') == nil)
assert(tonumber('-0xaaP ') == nil) -- no exponent
assert(tonumber('0x0.51p') == nil)
assert(tonumber('0x5p+-2') == nil)
-- testing hexadecimal numerals
assert(0x10 == 16 and 0xfff == 2^12 - 1 and 0XFB == 251)
assert(0x0p12 == 0 and 0x.0p-3 == 0)
assert(0xFFFFFFFF == (1 << 32) - 1)
assert(tonumber('+0x2') == 2)
assert(tonumber('-0xaA') == -170)
assert(tonumber('-0xffFFFfff') == -(1 << 32) + 1)
-- possible confusion with decimal exponent
assert(0E+1 == 0 and 0xE+1 == 15 and 0xe-1 == 13)
-- floating hexas
assert(tonumber(' 0x2.5 ') == 0x25/16)
assert(tonumber(' -0x2.5 ') == -0x25/16)
assert(tonumber(' +0x0.51p+8 ') == 0x51)
assert(0x.FfffFFFF == 1 - '0x.00000001')
assert('0xA.a' + 0 == 10 + 10/16)
assert(0xa.aP4 == 0XAA)
assert(0x4P-2 == 1)
assert(0x1.1 == '0x1.' + '+0x.1')
assert(0Xabcdef.0 == 0x.ABCDEFp+24)
assert(1.1 == 1.+.1)
assert(100.0 == 1E2 and .01 == 1e-2)
assert(1111111111 - 1111111110 == 1000.00e-03)
assert(1.1 == '1.'+'.1')
assert(tonumber'1111111111' - tonumber'1111111110' ==
tonumber" +0.001e+3 \n\t")
assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31)
assert(0.123456 > 0.123455)
assert(tonumber('+1.23E18') == 1.23*10.0^18)
-- testing order operators
assert(not(1<1) and (1<2) and not(2<1))
assert(not('a'<'a') and ('a'<'b') and not('b'<'a'))
assert((1<=1) and (1<=2) and not(2<=1))
assert(('a'<='a') and ('a'<='b') and not('b'<='a'))
assert(not(1>1) and not(1>2) and (2>1))
assert(not('a'>'a') and not('a'>'b') and ('b'>'a'))
assert((1>=1) and not(1>=2) and (2>=1))
assert(('a'>='a') and not('a'>='b') and ('b'>='a'))
assert(1.3 < 1.4 and 1.3 <= 1.4 and not (1.3 < 1.3) and 1.3 <= 1.3)
-- testing mod operator
assert(eqT(-4 % 3, 2))
assert(eqT(4 % -3, -2))
assert(eqT(-4.0 % 3, 2.0))
assert(eqT(4 % -3.0, -2.0))
assert(math.pi - math.pi % 1 == 3)
assert(math.pi - math.pi % 0.001 == 3.141)
assert(eqT(minint % minint, 0))
assert(eqT(maxint % maxint, 0))
assert((minint + 1) % minint == minint + 1)
assert((maxint - 1) % maxint == maxint - 1)
assert(minint % maxint == maxint - 1)
assert(minint % -1 == 0)
assert(minint % -2 == 0)
assert(maxint % -2 == -1)
-- non-portable tests because Windows C library cannot compute
-- fmod(1, huge) correctly
if not _port then
local function anan (x) assert(isNaN(x)) end -- assert Not a Number
anan(0.0 % 0)
anan(1.3 % 0)
anan(math.huge % 1)
anan(math.huge % 1e30)
anan(-math.huge % 1e30)
anan(-math.huge % -1e30)
assert(1 % math.huge == 1)
assert(1e30 % math.huge == 1e30)
assert(1e30 % -math.huge == -math.huge)
assert(-1 % math.huge == math.huge)
assert(-1 % -math.huge == -1)
end
-- testing unsigned comparisons
assert(math.ult(3, 4))
assert(not math.ult(4, 4))
assert(math.ult(-2, -1))
assert(math.ult(2, -1))
assert(not math.ult(-2, -2))
assert(math.ult(maxint, minint))
assert(not math.ult(minint, maxint))
assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1))
assert(eq(math.tan(math.pi/4), 1))
assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0))
assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and
eq(math.asin(1), math.pi/2))
assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2))
assert(math.abs(-10.43) == 10.43)
assert(eqT(math.abs(minint), minint))
assert(eqT(math.abs(maxint), maxint))
assert(eqT(math.abs(-maxint), maxint))
assert(eq(math.atan(1,0), math.pi/2))
assert(math.fmod(10,3) == 1)
assert(eq(math.sqrt(10)^2, 10))
assert(eq(math.log(2, 10), math.log(2)/math.log(10)))
assert(eq(math.log(2, 2), 1))
assert(eq(math.log(9, 3), 2))
assert(eq(math.exp(0), 1))
assert(eq(math.sin(10), math.sin(10%(2*math.pi))))
assert(tonumber(' 1.3e-2 ') == 1.3e-2)
assert(tonumber(' -1.00000000000001 ') == -1.00000000000001)
-- testing constant limits
-- 2^23 = 8388608
assert(8388609 + -8388609 == 0)
assert(8388608 + -8388608 == 0)
assert(8388607 + -8388607 == 0)
do -- testing floor & ceil
assert(eqT(math.floor(3.4), 3))
assert(eqT(math.ceil(3.4), 4))
assert(eqT(math.floor(-3.4), -4))
assert(eqT(math.ceil(-3.4), -3))
assert(eqT(math.floor(maxint), maxint))
assert(eqT(math.ceil(maxint), maxint))
assert(eqT(math.floor(minint), minint))
assert(eqT(math.floor(minint + 0.0), minint))
assert(eqT(math.ceil(minint), minint))
assert(eqT(math.ceil(minint + 0.0), minint))
assert(math.floor(1e50) == 1e50)
assert(math.ceil(1e50) == 1e50)
assert(math.floor(-1e50) == -1e50)
assert(math.ceil(-1e50) == -1e50)
for _, p in pairs{31,32,63,64} do
assert(math.floor(2^p) == 2^p)
assert(math.floor(2^p + 0.5) == 2^p)
assert(math.ceil(2^p) == 2^p)
assert(math.ceil(2^p - 0.5) == 2^p)
end
checkerror("number expected", math.floor, {})
checkerror("number expected", math.ceil, print)
assert(eqT(math.tointeger(minint), minint))
assert(eqT(math.tointeger(minint .. ""), minint))
assert(eqT(math.tointeger(maxint), maxint))
assert(eqT(math.tointeger(maxint .. ""), maxint))
assert(eqT(math.tointeger(minint + 0.0), minint))
assert(math.tointeger(0.0 - minint) == nil)
assert(math.tointeger(math.pi) == nil)
assert(math.tointeger(-math.pi) == nil)
assert(math.floor(math.huge) == math.huge)
assert(math.ceil(math.huge) == math.huge)
assert(math.tointeger(math.huge) == nil)
assert(math.floor(-math.huge) == -math.huge)
assert(math.ceil(-math.huge) == -math.huge)
assert(math.tointeger(-math.huge) == nil)
assert(math.tointeger("34.0") == 34)
assert(math.tointeger("34.3") == nil)
assert(math.tointeger({}) == nil)
assert(math.tointeger(0/0) == nil) -- NaN
end
-- testing fmod for integers
for i = -6, 6 do
for j = -6, 6 do
if j ~= 0 then
local mi = math.fmod(i, j)
local mf = math.fmod(i + 0.0, j)
assert(mi == mf)
assert(math.type(mi) == 'integer' and math.type(mf) == 'float')
if (i >= 0 and j >= 0) or (i <= 0 and j <= 0) or mi == 0 then
assert(eqT(mi, i % j))
end
end
end
end
assert(eqT(math.fmod(minint, minint), 0))
assert(eqT(math.fmod(maxint, maxint), 0))
assert(eqT(math.fmod(minint + 1, minint), minint + 1))
assert(eqT(math.fmod(maxint - 1, maxint), maxint - 1))
checkerror("zero", math.fmod, 3, 0)
do -- testing max/min
checkerror("value expected", math.max)
checkerror("value expected", math.min)
assert(eqT(math.max(3), 3))
assert(eqT(math.max(3, 5, 9, 1), 9))
assert(math.max(maxint, 10e60) == 10e60)
assert(eqT(math.max(minint, minint + 1), minint + 1))
assert(eqT(math.min(3), 3))
assert(eqT(math.min(3, 5, 9, 1), 1))
assert(math.min(3.2, 5.9, -9.2, 1.1) == -9.2)
assert(math.min(1.9, 1.7, 1.72) == 1.7)
assert(math.min(-10e60, minint) == -10e60)
assert(eqT(math.min(maxint, maxint - 1), maxint - 1))
assert(eqT(math.min(maxint - 2, maxint, maxint - 1), maxint - 2))
end
-- testing implicit convertions
local a,b = '10', '20'
assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20)
assert(a == '10' and b == '20')
do
print("testing -0 and NaN")
local mz, z = -0.0, 0.0
assert(mz == z)
assert(1/mz < 0 and 0 < 1/z)
local a = {[mz] = 1}
assert(a[z] == 1 and a[mz] == 1)
a[z] = 2
assert(a[z] == 2 and a[mz] == 2)
local inf = math.huge * 2 + 1
mz, z = -1/inf, 1/inf
assert(mz == z)
assert(1/mz < 0 and 0 < 1/z)
local NaN = inf - inf
assert(NaN ~= NaN)
assert(not (NaN < NaN))
assert(not (NaN <= NaN))
assert(not (NaN > NaN))
assert(not (NaN >= NaN))
assert(not (0 < NaN) and not (NaN < 0))
local NaN1 = 0/0
assert(NaN ~= NaN1 and not (NaN <= NaN1) and not (NaN1 <= NaN))
local a = {}
assert(not pcall(rawset, a, NaN, 1))
assert(a[NaN] == nil)
a[1] = 1
assert(not pcall(rawset, a, NaN, 1))
assert(a[NaN] == nil)
-- strings with same binary representation as 0.0 (might create problems
-- for constant manipulation in the pre-compiler)
local a1, a2, a3, a4, a5 = 0, 0, "\0\0\0\0\0\0\0\0", 0, "\0\0\0\0\0\0\0\0"
assert(a1 == a2 and a2 == a4 and a1 ~= a3)
assert(a3 == a5)
end
print("testing 'math.random'")
math.randomseed(0)
do -- test random for floats
local max = -math.huge
local min = math.huge
for i = 0, 20000 do
local t = math.random()
assert(0 <= t and t < 1)
max = math.max(max, t)
min = math.min(min, t)
if eq(max, 1, 0.001) and eq(min, 0, 0.001) then
goto ok
end
end
-- loop ended without satisfing condition
assert(false)
::ok::
end
do
local function aux (p, lim) -- test random for small intervals
local x1, x2
if #p == 1 then x1 = 1; x2 = p[1]
else x1 = p[1]; x2 = p[2]
end
local mark = {}; local count = 0 -- to check that all values appeared
for i = 0, lim or 2000 do
local t = math.random(table.unpack(p))
assert(x1 <= t and t <= x2)
if not mark[t] then -- new value
mark[t] = true
count = count + 1
end
if count == x2 - x1 + 1 then -- all values appeared; OK
goto ok
end
end
-- loop ended without satisfing condition
assert(false)
::ok::
end
aux({-10,0})
aux({6})
aux({-10, 10})
aux({minint, minint})
aux({maxint, maxint})
aux({minint, minint + 9})
aux({maxint - 3, maxint})
end
do
local function aux(p1, p2) -- test random for large intervals
local max = minint
local min = maxint
local n = 200
local mark = {}; local count = 0 -- to count how many different values
for _ = 1, n do
local t = math.random(p1, p2)
max = math.max(max, t)
min = math.min(min, t)
if not mark[t] then -- new value
mark[t] = true
count = count + 1
end
end
-- at least 80% of values are different
assert(count >= n * 0.8)
-- min and max not too far from formal min and max
local diff = (p2 - p1) // 8
assert(min < p1 + diff and max > p2 - diff)
end
aux(0, maxint)
aux(1, maxint)
aux(minint, -1)
aux(minint // 2, maxint // 2)
end
for i=1,100 do
assert(math.random(maxint) > 0)
assert(math.random(minint, -1) < 0)
end
assert(not pcall(math.random, 1, 2, 3)) -- too many arguments
-- empty interval
assert(not pcall(math.random, minint + 1, minint))
assert(not pcall(math.random, maxint, maxint - 1))
assert(not pcall(math.random, maxint, minint))
-- interval too large
assert(not pcall(math.random, minint, 0))
assert(not pcall(math.random, -1, maxint))
assert(not pcall(math.random, minint // 2, maxint // 2 + 1))
print('OK')