comparison operators

This commit is contained in:
pommicket 2022-02-13 11:24:30 -05:00
parent 6b42f4198f
commit 6814de1974
3 changed files with 187 additions and 21 deletions

View file

@ -662,12 +662,44 @@ function emit_jae_rel32
code_output += 4
return
function emit_cmp_rax_rbx
; 48 39 d8
*2code_output = 0x3948
code_output += 2
*1code_output = 0xd8
code_output += 1
return
function emit_comisd_xmm0_xmm1
; 66 0f 2f c1
*4code_output = 0xc12f0f66
code_output += 4
return
#define COMPARISON_E 0x4
#define COMPARISON_NE 0x5
#define COMPARISON_L 0xc
#define COMPARISON_G 0xf
#define COMPARISON_LE 0xe
#define COMPARISON_GE 0xd
#define COMPARISON_B 0x2
#define COMPARISON_A 0x7
#define COMPARISON_BE 0x6
#define COMPARISON_AE 0x3
; emits two instructions:
; setC al
; movzx rax, al
function emit_setC_rax
; 0f 9C c0 48 0f b6 c0
argument comparison
local a
a = 0xc0b60f48c0900f
a |= comparison < 8
*8code_output = a
code_output += 7
return
; make sure you put the return value in the proper place before calling this
function generate_return
emit_mov_reg(REG_RSP, REG_RBP)
@ -1436,7 +1468,78 @@ function generate_push_address_of_expression
expr += 8
return expr
; pop the top two things off the stack of type `type` and compare them
function generate_stack_compare
argument statement
argument type
local p
p = types + type
emit_add_rsp_imm32(16) ; add rsp, 16
; NB: we do float comparisons as double comparisons (see function comparison_type)
if *1p == TYPE_DOUBLE goto stack_compare_double
if *1p > TYPE_UNSIGNED_LONG goto stack_compare_bad
emit_mov_rax_qword_rsp_plus_imm32(-16) ; mov rax, [rsp-16] (second operand)
emit_mov_reg(REG_RBX, REG_RAX) ; mov rbx, rax
emit_mov_rax_qword_rsp_plus_imm32(-8) ; mov rax, [rsp-8] (first operand)
emit_cmp_rax_rbx() ; cmp rax, rbx
return
:stack_compare_bad
die(.str_stack_compare_bad)
:str_stack_compare_bad
string Bad types passed to generate_stack_compare()
byte 0
:stack_compare_double
emit_mov_rax_qword_rsp_plus_imm32(-8) ; mov rax, [rsp-8] (first operand)
emit_movq_xmm0_rax() ; movq xmm0, rax
emit_mov_rax_qword_rsp_plus_imm32(-16) ; mov rax, [rsp-16] (second operand)
emit_movq_xmm1_rax() ; movq xmm1, rax
emit_comisd_xmm0_xmm1() ; comisd xmm0, xmm1
return
; given that expr is a comparison expression, which type should both operands be converted to?
function comparison_type
argument statement
argument expr
local type1
local type2
expr += 8
type1 = expr + 4
type1 = *4type1
expr = expression_get_end(expr)
type2 = expr + 4
type2 = *4type2
type1 += types
type1 = *1type1
type2 += types
type2 = *1type2
; do float comparisons as double comparisons to make things simpler
if type1 == TYPE_FLOAT goto return_type_double
if type2 == TYPE_FLOAT goto return_type_double
if type1 == TYPE_POINTER goto return_type_unsigned_long
if type2 == TYPE_POINTER goto return_type_unsigned_long
return expr_binary_type_usual_conversions(statement, type1, type2)
; is this comparison expression a comparison between unsigned integers or floats?
function comparison_is_unsigned
argument statement
argument expr
local type
type = comparison_type(statement, expr)
type += types
type = *1type
if type > TYPE_UNSIGNED_LONG goto return_1 ; double comparisons use setb/seta not setl/setg
type &= 1
if type == 0 goto return_1
return 0
; `statement` is used for errors
; returns pointer to end of expression
function generate_push_expression
@ -1446,6 +1549,7 @@ function generate_push_expression
local c
local d
local p
local comparison
local addr1
local addr2
local type
@ -1475,6 +1579,12 @@ function generate_push_expression
if c == EXPRESSION_BITWISE_XOR goto generate_bitwise_xor
if c == EXPRESSION_LSHIFT goto generate_lshift
if c == EXPRESSION_RSHIFT goto generate_rshift
if c == EXPRESSION_EQ goto generate_eq
if c == EXPRESSION_NEQ goto generate_neq
if c == EXPRESSION_LT goto generate_lt
if c == EXPRESSION_GT goto generate_gt
if c == EXPRESSION_LEQ goto generate_leq
if c == EXPRESSION_GEQ goto generate_geq
if c == EXPRESSION_ASSIGN goto generate_assign
if c == EXPRESSION_ASSIGN_ADD goto generate_assign_add
if c == EXPRESSION_ASSIGN_SUB goto generate_assign_sub
@ -1850,13 +1960,56 @@ function generate_push_expression
p = expr + 4
expr = generate_push_expression(statement, expr)
generate_stack_compare_against_zero(statement, *4p)
emit_je_rel32(7) ; je +7 (2 bytes for xor eax, eax; 5 bytes for jmp +10)
emit_zero_rax() ; xor eax, eax
emit_jmp_rel32(10) ; jmp +10 (10 bytes for mov rax, 1)
emit_mov_rax_imm64(1) ; mov rax, 1
emit_push_rax() ; push rax
emit_setC_rax(COMPARISON_E) ; sete al ; movzx rax, al
emit_push_rax() ; push rax
return expr
:generate_eq
comparison = COMPARISON_E
goto generate_comparison
:generate_neq
comparison = COMPARISON_NE
goto generate_comparison
:generate_lt
b = comparison_is_unsigned(statement, expr)
if b != 0 goto comparison_b
comparison = COMPARISON_L
goto generate_comparison
:comparison_b
comparison = COMPARISON_B
goto generate_comparison
:generate_leq
b = comparison_is_unsigned(statement, expr)
if b != 0 goto comparison_be
comparison = COMPARISON_LE
goto generate_comparison
:comparison_be
comparison = COMPARISON_BE
goto generate_comparison
:generate_gt
b = comparison_is_unsigned(statement, expr)
if b != 0 goto comparison_a
comparison = COMPARISON_G
goto generate_comparison
:comparison_a
comparison = COMPARISON_A
goto generate_comparison
:generate_geq
b = comparison_is_unsigned(statement, expr)
if b != 0 goto comparison_ae
comparison = COMPARISON_GE
goto generate_comparison
:comparison_ae
comparison = COMPARISON_AE
goto generate_comparison
:generate_comparison
c = comparison_type(statement, expr)
expr += 8
expr = generate_push_expression_casted(statement, expr, c)
expr = generate_push_expression_casted(statement, expr, c)
generate_stack_compare(statement, c)
emit_setC_rax(comparison)
emit_push_rax()
return expr
:generate_conditional
expr += 8
p = expr + 4

View file

@ -1,19 +1,17 @@
long factorial(long x) {
return x ? x * factorial(x - 1)
return x > 0 ? x * factorial(x - 1)
: 1;
}
long fibonacci(long x) {
return x ?
x-1 ?
return x > 0 ?
x > 1 ?
fibonacci(x-1) + fibonacci(x-2)
: 1
: 0;
}
int main(int argc, char **argv) {
int x = 104;
x >>= 3;
return x;
return factorial(6);
}

View file

@ -31,13 +31,8 @@ command codes.
## prerequisite knowledge
In this series, I want to *everything* that's going on to be understandable. I'm going to
need to assume some passing knowledge, so here's a quick overview of what you'll
want to know before starting.
You don't need to understand everything about each of these, just get
a general idea:
If you want to follow along with this series, you'll probably want to know about:
- the basics of programming
- what a system call is
- what memory is
- what a compiler is
@ -56,8 +51,7 @@ decimal.
- how pointers work
- how floating-point numbers work
If you aren't familiar with x86-64 assembly, be sure to check out the instruction list
below.
If you're unfamiliar with x86-64 assembly, you should check out the instruction list below.
## principles
@ -99,7 +93,18 @@ x86-64 has a *gigantic* instruction set. The manual for it is over 2,000 pages
long! To make things simpler, we will only use a small subset.
Here are all the instructions we'll be using. If you're not familiar with
x86-64 assembly, you might want to look over these (but you don't need to understand everything).
x86-64 assembly, you might want to look over these.
x86-64 has 16 integer registers: rax, rbx, rcx, rdx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15.
We will almost entirely be using the first 8 of these.
al refers to the bottom 8 bits of rax, likewise with bl, cl, dl;
ax refers to the bottom 16 bits of rax, likewise with bx, cx, dx;
eax refers to the bottom 32 bits of rax, likewise with ebx, ecx, edx.
x86-64 also has 16 floating-point registers: xmm0 through xmm15. We'll only be using
xmm0 and xmm1. These registers can hold either four 32-bit floating-point numbers (`float`s) or
two 64-bit floating-point numbers (`double`s), but we'll only be using them to hold either one
`float` or one `double`.
In the table below, `IMM64` means a 64-bit *immediate* (a constant number).
`rdx:rax` refers to the 128-bit number you get by combining `rdx` and `rax`.
@ -184,6 +189,16 @@ ax bx cx dx sp bp si di
│ ja IMM32 │ 0f 87 IMM32 │ jump if "above" (like jg but unsigned) │
│ jbe IMM32 │ 0f 86 IMM32 │ jump if below or equal to │
│ jae IMM32 │ 0f 83 IMM32 │ jump if above or equal to │
│ sete al │ 0f 94 c0 │ set al to 1 if equal; 0 otherwise │
│ setne al │ 0f 95 c0 │ set al to 1 if not equal │
│ setl al │ 0f 9c c0 │ set al to 1 if less than │
│ setg al │ 0f 9f c0 │ set al to 1 if greater than │
│ setle al │ 0f 9e c0 │ set al to 1 if less than or equal to │
│ setge al │ 0f 9d c0 │ set al to 1 if greater than or equal to│
│ setb al │ 0f 92 c0 │ set al to 1 if below │
│ seta al │ 0f 97 c0 │ set al to 1 if above │
│ setbe al │ 0f 96 c0 │ set al to 1 if below or equal to │
│ setae al │ 0f 93 c0 │ set al to 1 if above or equal to │
| movq rax, xmm0 | 66 48 0f 7e c0 | set rax to xmm0 |
| movq xmm0, rax | 66 48 0f 6e c0 | set xmm0 to rax |
| movq xmm1, rax | 66 48 0f 6e c8 | set xmm1 to rax |