math.h
This commit is contained in:
parent
95e7ec1ab5
commit
42911ccf67
4 changed files with 415 additions and 12 deletions
10
05/main.c
10
05/main.c
|
@ -1,15 +1,9 @@
|
|||
#define _STDLIB_DEBUG
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stddef.h>
|
||||
#include <ctype.h>
|
||||
#include <locale.h>
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
setlocale(LC_ALL, "C");
|
||||
struct lconv *c = localeconv();
|
||||
printf("%s\n",c->negative_sign);
|
||||
printf("%.16g\n", cosh(10));
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
409
05/math.h
Normal file
409
05/math.h
Normal file
|
@ -0,0 +1,409 @@
|
|||
#ifndef _MATH_H
|
||||
#define _MATH_H
|
||||
|
||||
#include <stdc_common.h>
|
||||
#define HUGE_VAL _INFINITY // glibc defines HUGE_VAL as infinity (the C standard only requires it to be positive, funnily enough)
|
||||
#define _NAN (-(_INFINITY-_INFINITY))
|
||||
#define _PI 3.141592653589793
|
||||
#define _2PI 6.283185307179586
|
||||
#define _HALF_PI 1.5707963267948966
|
||||
#define _THREE_HALVES_PI 4.71238898038469
|
||||
|
||||
// NOTE: these functions are not IEEE 754-compliant (the C standard doesn't require them to be), but they're pretty good
|
||||
|
||||
double frexp(double value, int *exp) {
|
||||
if (value == 0) {
|
||||
*exp = 0;
|
||||
return 0;
|
||||
}
|
||||
unsigned long u = *(unsigned long *)&value, significand;
|
||||
*exp = ((u >> 52) & 0x7ff) - 1022;
|
||||
// replace exponent with 1022
|
||||
u &= 0x800fffffffffffff;
|
||||
u |= 0x3fe0000000000000;
|
||||
return *(double *)&u;
|
||||
}
|
||||
|
||||
double ldexp(double x, int exp) {
|
||||
int e;
|
||||
double y = frexp(x, &e);
|
||||
// since x = y * 2^e, x * 2^exp = y * 2^(e+exp)
|
||||
exp += e;
|
||||
if (exp < -1022) return 0;
|
||||
if (exp > 1023) return _INFINITY;
|
||||
unsigned long pow2 = (unsigned long)(exp + 1023) << 52;
|
||||
return y * *(double *)&pow2;
|
||||
}
|
||||
|
||||
double floor(double x) {
|
||||
if (x >= 0.0) {
|
||||
if (x > 1073741824.0 * 1073741824.0)
|
||||
return x; // floats this big must be integers
|
||||
return (unsigned long)x;
|
||||
} else {
|
||||
if (x < -1073741824.0 * 1073741824.0)
|
||||
return x; // floats this big must be integers
|
||||
double i = (long)x;
|
||||
if (x == i) return x;
|
||||
return i - 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
double ceil(double x) {
|
||||
double f = floor(x);
|
||||
if (x == f) return f;
|
||||
return f + 1.;
|
||||
}
|
||||
|
||||
double fabs(double x) {
|
||||
// this is better than x >= 0 ? x : -x because it deals with -0 properly
|
||||
unsigned long u = *(unsigned long *)&x;
|
||||
u &= 0x7fffffffffffffff;
|
||||
return *(double *)&u;
|
||||
}
|
||||
|
||||
double fmod(double x, double y) {
|
||||
if (y == 0.0) {
|
||||
errno = EDOM;
|
||||
return 0.0;
|
||||
}
|
||||
return x - (floor(x / y) * y);
|
||||
}
|
||||
|
||||
double _sin_taylor(double x) {
|
||||
double i;
|
||||
double term = x;
|
||||
// taylor expansion for sin: x - x³/3! + x⁵/5! - ...
|
||||
|
||||
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
|
||||
double prev = -1.0;
|
||||
double sum = 0.0;
|
||||
double c = 0.0;
|
||||
for (i = 0.0; i < 100.0 && sum != prev; ++i) {
|
||||
prev = sum;
|
||||
double y = term - c;
|
||||
double t = sum + y;
|
||||
c = (t - sum) - y;
|
||||
sum = t;
|
||||
term *= -(x * x) / ((2.0*i+2.0)*(2.0*i+3.0));
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
double _cos_taylor(double x) {
|
||||
double i;
|
||||
double term = 1.0;
|
||||
// taylor expansion for cos: 1 - x²/2! + x⁴/4! - ...
|
||||
|
||||
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
|
||||
double prev = -1.0;
|
||||
double sum = 0.0;
|
||||
double c = 0.0;
|
||||
for (i = 0.0; i < 100.0 && sum != prev; ++i) {
|
||||
prev = sum;
|
||||
double y = term - c;
|
||||
double t = sum + y;
|
||||
c = (t - sum) - y;
|
||||
sum = t;
|
||||
term *= -(x * x) / ((2.0*i+1.0)*(2.0*i+2.0));
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
double sin(double x) {
|
||||
x = fmod(x, 2.0*_PI);
|
||||
// the Taylor series works best for small inputs. so, provide _sin_taylor with a value in the range [0,π/2]
|
||||
if (x < _HALF_PI)
|
||||
return _sin_taylor(x);
|
||||
if (x < _PI)
|
||||
return _sin_taylor(_PI - x);
|
||||
if (x < _THREE_HALVES_PI)
|
||||
return -_sin_taylor(x - _PI);
|
||||
return -_sin_taylor(_2PI - x);
|
||||
}
|
||||
|
||||
double cos(double x) {
|
||||
x = fmod(x, 2.0*_PI);
|
||||
// the Taylor series works best for small inputs. so, provide _cos_taylor with a value in the range [0,π/2]
|
||||
if (x < _HALF_PI)
|
||||
return _cos_taylor(x);
|
||||
if (x < _PI)
|
||||
return -_cos_taylor(_PI - x);
|
||||
if (x < _THREE_HALVES_PI)
|
||||
return -_cos_taylor(x - _PI);
|
||||
return _cos_taylor(_2PI - x);
|
||||
}
|
||||
|
||||
double tan(double x) {
|
||||
return sin(x)/cos(x);
|
||||
}
|
||||
|
||||
// for sqrt and the inverse trigonometric functions, we use Newton's method
|
||||
// https://en.wikipedia.org/wiki/Newton%27s_method
|
||||
|
||||
double sqrt(double x) {
|
||||
if (x < 0.0) {
|
||||
errno = EDOM;
|
||||
return _NAN;
|
||||
}
|
||||
if (x == 0.0) return 0.0;
|
||||
if (x == _INFINITY) return _INFINITY;
|
||||
// we want to find the root of: f(t) = t² - x
|
||||
// f'(t) = 2t
|
||||
int exp;
|
||||
double y = frexp(x, &exp);
|
||||
if (exp & 1) {
|
||||
y *= 2;
|
||||
--exp;
|
||||
}
|
||||
// newton's method will be slow for very small or very large numbers.
|
||||
// so we have ensured that
|
||||
// 0.5 ≤ y < 2
|
||||
// and also x = y * 2^exp; sqrt(x) = sqrt(y) * 2^(exp/2) NB: we've ensured that exp is even
|
||||
|
||||
// 7 iterations seems to be more than enough for any number
|
||||
double t = y;
|
||||
t = (y / t + t) * 0.5;
|
||||
t = (y / t + t) * 0.5;
|
||||
t = (y / t + t) * 0.5;
|
||||
t = (y / t + t) * 0.5;
|
||||
t = (y / t + t) * 0.5;
|
||||
t = (y / t + t) * 0.5;
|
||||
t = (y / t + t) * 0.5;
|
||||
|
||||
return ldexp(t, exp>>1);
|
||||
|
||||
}
|
||||
|
||||
double _acos_newton(double x) {
|
||||
// we want to find the root of: f(t) = cos(t) - x
|
||||
// f'(t) = -sin(t)
|
||||
double t = _HALF_PI - x; // reasonably good first approximation
|
||||
double prev_t = -100.0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 100 && prev_t != t; ++i) {
|
||||
prev_t = t;
|
||||
t += (cos(t) - x) / sin(t);
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
double _asin_newton(double x) {
|
||||
// we want to find the root of: f(t) = sin(t) - x
|
||||
// f'(t) = cos(t)
|
||||
double t = x; // reasonably good first approximation
|
||||
double prev_t = -100.0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 100 && prev_t != t; ++i) {
|
||||
prev_t = t;
|
||||
t += (x - sin(t)) / cos(t);
|
||||
}
|
||||
return t;
|
||||
}
|
||||
|
||||
double acos(double x) {
|
||||
if (x > 1.0 || x < -1.0) {
|
||||
errno = EDOM;
|
||||
return _NAN;
|
||||
}
|
||||
// Newton's method doesn't work well near -1 and 1, because f(x) / f'(x) is very large.
|
||||
if (x > 0.8)
|
||||
return _asin_newton(sqrt(1-x*x));
|
||||
if (x < -0.8)
|
||||
return _PI-_asin_newton(sqrt(1-x*x));
|
||||
|
||||
return _acos_newton(x);
|
||||
}
|
||||
|
||||
double asin(double x) {
|
||||
if (x > 1.0 || x < -1.0) {
|
||||
errno = EDOM;
|
||||
return _NAN;
|
||||
}
|
||||
// Newton's method doesn't work well near -1 and 1, because f(x) / f'(x) is very large.
|
||||
if (x > 0.8)
|
||||
return _acos_newton(sqrt(1.0-x*x));
|
||||
if (x < -0.8)
|
||||
return -_acos_newton(sqrt(1.0-x*x));
|
||||
|
||||
return _asin_newton(x);
|
||||
}
|
||||
|
||||
double atan(double x) {
|
||||
// the formula below breaks for really large inputs; tan(10^20) as a double is indistinguishable from pi/2 anyways
|
||||
if (x > 1e20) return _HALF_PI;
|
||||
if (x < -1e20) return -_HALF_PI;
|
||||
|
||||
// we can use a nice trigonometric identity here
|
||||
return asin(x / sqrt(1+x*x));
|
||||
}
|
||||
|
||||
double atan2(double y, double x) {
|
||||
if (x == 0.0) {
|
||||
if (y > 0.0) return _HALF_PI;
|
||||
if (y < 0.0) return -_HALF_PI;
|
||||
return 0.0; // this is what IEEE 754 does
|
||||
}
|
||||
|
||||
double a = atan(y/x);
|
||||
if (x > 0.0) {
|
||||
return a;
|
||||
} else if (y > 0.0) {
|
||||
return a + _PI;
|
||||
} else {
|
||||
return a - _PI;
|
||||
}
|
||||
}
|
||||
|
||||
double _exp_taylor(double x) {
|
||||
double i;
|
||||
double term = 1.0;
|
||||
// taylor expansion for exp: 1 + x/1! + x²/2! + ...
|
||||
|
||||
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
|
||||
double prev = -1.0;
|
||||
double sum = 0.0;
|
||||
double c = 0.0;
|
||||
for (i = 1.0; i < 100.0 && sum != prev; ++i) {
|
||||
prev = sum;
|
||||
double y = term - c;
|
||||
double t = sum + y;
|
||||
c = (t - sum) - y;
|
||||
sum = t;
|
||||
term *= x / i;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
double exp(double x) {
|
||||
if (x > 709.782712893384) {
|
||||
errno = ERANGE;
|
||||
return _INFINITY;
|
||||
}
|
||||
if (x == 0.0) return 1;
|
||||
if (x < -744.4400719213812)
|
||||
return 0;
|
||||
int i, e;
|
||||
double y = frexp(x, &e);
|
||||
if (e < 1.0) return _exp_taylor(x);
|
||||
// the taylor series doesn't work well for large x (positive or negative),
|
||||
// so we use the fact that exp(y*2^e) = exp(y)^(2^e)
|
||||
double value = _exp_taylor(y);
|
||||
for (i = 0; i < e; ++i)
|
||||
value *= value;
|
||||
return value;
|
||||
}
|
||||
|
||||
#define _LOG2 0.6931471805599453
|
||||
|
||||
double log(double x) {
|
||||
if (x < 0.0) {
|
||||
errno = EDOM;
|
||||
return _NAN;
|
||||
}
|
||||
if (x == 0.0) return -_INFINITY;
|
||||
if (x == 1.0) return 0.0;
|
||||
int e;
|
||||
double sum;
|
||||
double a = frexp(x, &e);
|
||||
// since x = a * 2^e, log(x) = log(a) + log(2^e) = log(a) + e log(2)
|
||||
sum = e * _LOG2;
|
||||
// now that a is in [1/2,1), the series log(a) = (a-1) - (a-1)²/2 + (a-1)³/3 - ... converges quickly
|
||||
|
||||
a -= 1;
|
||||
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
|
||||
double prev = HUGE_VAL;
|
||||
double c = 0;
|
||||
double term = a;
|
||||
double i;
|
||||
for (i = 1.0; i < 100.0 && sum != prev; ++i) {
|
||||
prev = sum;
|
||||
double y = term / i - c;
|
||||
double t = sum + y;
|
||||
c = (t - sum) - y;
|
||||
sum = t;
|
||||
term *= -a;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
#define _INVLOG10 0.43429448190325176 // = 1/log(10)
|
||||
double log10(double x) {
|
||||
return log(x) * _INVLOG10;
|
||||
}
|
||||
|
||||
double modf(double value, double *iptr) {
|
||||
double m = fmod(value, 1.0);
|
||||
if (value >= 0.0) {
|
||||
*iptr = value - m;
|
||||
return m;
|
||||
} else if (m == 0.0) {
|
||||
*iptr = value;
|
||||
return 0.0;
|
||||
} else {
|
||||
*iptr = value - m + 1.0;
|
||||
return m - 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
// double raised to the power of an integer
|
||||
double _dpowi(double x, unsigned long y) {
|
||||
double result = 1.0;
|
||||
if (y & 1) {
|
||||
--y;
|
||||
result *= x;
|
||||
}
|
||||
if (y > 0) {
|
||||
double p = _dpowi(x, y >> 1);
|
||||
result *= p * p;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
double pow(double x, double y) {
|
||||
if (x > 0.0) {
|
||||
return exp(y * log(x));
|
||||
} else if (x < 0.0) {
|
||||
if (fmod(y, 1.0) != 0) {
|
||||
errno = EDOM;
|
||||
return _NAN;
|
||||
}
|
||||
if (y > 1.6602069666338597e+19)
|
||||
return x < -1. ? -_INFINITY : 0.;
|
||||
if (y < -1.6602069666338597e+19)
|
||||
return x < -1. ? 0. : -_INFINITY;
|
||||
return _dpowi(x, (unsigned long)y);
|
||||
} else {
|
||||
if (y < 0) {
|
||||
errno = EDOM;
|
||||
return _NAN;
|
||||
}
|
||||
if (y > 0) {
|
||||
// 0^x = 0 for x>0
|
||||
return 0.;
|
||||
}
|
||||
// 0^0 = 1
|
||||
return 1.;
|
||||
}
|
||||
}
|
||||
|
||||
double cosh(double x) {
|
||||
double e = exp(x);
|
||||
return (e + 1./e) * 0.5;
|
||||
}
|
||||
|
||||
double sinh(double x) {
|
||||
double e = exp(x);
|
||||
return (e - 1./e) * 0.5;
|
||||
}
|
||||
|
||||
double tanh(double x) {
|
||||
if (x > 20.0) return 1.;
|
||||
if (x < -20.0) return -1.;
|
||||
double e = exp(x);
|
||||
double f = 1./e;
|
||||
return (e - f) / (e + f);
|
||||
}
|
||||
#endif // _MATH_H
|
|
@ -424,6 +424,7 @@ double strtod(const char *nptr, char **endptr) {
|
|||
sum = t;
|
||||
}
|
||||
|
||||
if (sum == _INFINITY) errno = ERANGE;
|
||||
if (endptr) *endptr = nptr;
|
||||
return sum * sign;
|
||||
}
|
||||
|
|
|
@ -287,6 +287,7 @@ function tokenize
|
|||
fraction = strtoi(&in, 10)
|
||||
; e.g. to turn 35 into .35, multiply by 10^-2
|
||||
pow10 = p - in
|
||||
;putnln_signed(pow10)
|
||||
if pow10 < -400 goto bad_float
|
||||
:float_no_fraction
|
||||
; construct the number integer + fraction*10^pow10
|
||||
|
@ -303,16 +304,13 @@ function tokenize
|
|||
exponent = new_exponent
|
||||
significand += right_shift(integer, exponent)
|
||||
:float_no_integer
|
||||
|
||||
if *1in == 'e goto float_exponent
|
||||
if *1in == 'E goto float_exponent
|
||||
|
||||
:float_have_significand_and_exponent
|
||||
if significand == 0 goto float_zero
|
||||
normalize_float(&significand, &exponent)
|
||||
; putn(significand)
|
||||
; putc(32)
|
||||
; putn_signed(exponent)
|
||||
; putc(10)
|
||||
; make number round to the nearest representable float roughly (this is what gcc does)
|
||||
; this fails for 5e-100 probably because of imprecision, but mostly works
|
||||
significand += 15
|
||||
|
@ -321,6 +319,7 @@ function tokenize
|
|||
exponent += 5
|
||||
exponent += 52 ; 1001010111... => 1.001010111...
|
||||
n = leftmost_1bit(significand)
|
||||
exponent += n - 52 ; in most cases, this is 0, but sometimes it turns out to be 1.
|
||||
b = 1 < n
|
||||
significand &= ~b
|
||||
data = significand
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue