lang-bootstrap/05/math.h

410 lines
9 KiB
C
Raw Normal View History

2022-02-15 22:41:18 -05:00
#ifndef _MATH_H
#define _MATH_H
#include <stdc_common.h>
#define HUGE_VAL _INFINITY // glibc defines HUGE_VAL as infinity (the C standard only requires it to be positive, funnily enough)
#define _NAN (-(_INFINITY-_INFINITY))
#define _PI 3.141592653589793
#define _2PI 6.283185307179586
#define _HALF_PI 1.5707963267948966
#define _THREE_HALVES_PI 4.71238898038469
// NOTE: these functions are not IEEE 754-compliant (the C standard doesn't require them to be), but they're pretty good
double frexp(double value, int *exp) {
if (value == 0) {
*exp = 0;
return 0;
}
unsigned long u = *(unsigned long *)&value, significand;
*exp = ((u >> 52) & 0x7ff) - 1022;
// replace exponent with 1022
u &= 0x800fffffffffffff;
u |= 0x3fe0000000000000;
return *(double *)&u;
}
double ldexp(double x, int exp) {
int e;
double y = frexp(x, &e);
// since x = y * 2^e, x * 2^exp = y * 2^(e+exp)
exp += e;
if (exp < -1022) return 0;
if (exp > 1023) return _INFINITY;
unsigned long pow2 = (unsigned long)(exp + 1023) << 52;
return y * *(double *)&pow2;
}
double floor(double x) {
if (x >= 0.0) {
if (x > 1073741824.0 * 1073741824.0)
return x; // floats this big must be integers
return (unsigned long)x;
} else {
if (x < -1073741824.0 * 1073741824.0)
return x; // floats this big must be integers
double i = (long)x;
if (x == i) return x;
return i - 1.0;
}
}
double ceil(double x) {
double f = floor(x);
if (x == f) return f;
return f + 1.;
}
double fabs(double x) {
// this is better than x >= 0 ? x : -x because it deals with -0 properly
unsigned long u = *(unsigned long *)&x;
u &= 0x7fffffffffffffff;
return *(double *)&u;
}
double fmod(double x, double y) {
if (y == 0.0) {
errno = EDOM;
return 0.0;
}
return x - (floor(x / y) * y);
}
double _sin_taylor(double x) {
double i;
double term = x;
// taylor expansion for sin: x - x³/3! + x⁵/5! - ...
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
double prev = -1.0;
double sum = 0.0;
double c = 0.0;
for (i = 0.0; i < 100.0 && sum != prev; ++i) {
prev = sum;
double y = term - c;
double t = sum + y;
c = (t - sum) - y;
sum = t;
term *= -(x * x) / ((2.0*i+2.0)*(2.0*i+3.0));
}
return sum;
}
double _cos_taylor(double x) {
double i;
double term = 1.0;
// taylor expansion for cos: 1 - x²/2! + x⁴/4! - ...
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
double prev = -1.0;
double sum = 0.0;
double c = 0.0;
for (i = 0.0; i < 100.0 && sum != prev; ++i) {
prev = sum;
double y = term - c;
double t = sum + y;
c = (t - sum) - y;
sum = t;
term *= -(x * x) / ((2.0*i+1.0)*(2.0*i+2.0));
}
return sum;
}
double sin(double x) {
x = fmod(x, 2.0*_PI);
// the Taylor series works best for small inputs. so, provide _sin_taylor with a value in the range [0,π/2]
if (x < _HALF_PI)
return _sin_taylor(x);
if (x < _PI)
return _sin_taylor(_PI - x);
if (x < _THREE_HALVES_PI)
return -_sin_taylor(x - _PI);
return -_sin_taylor(_2PI - x);
}
double cos(double x) {
x = fmod(x, 2.0*_PI);
// the Taylor series works best for small inputs. so, provide _cos_taylor with a value in the range [0,π/2]
if (x < _HALF_PI)
return _cos_taylor(x);
if (x < _PI)
return -_cos_taylor(_PI - x);
if (x < _THREE_HALVES_PI)
return -_cos_taylor(x - _PI);
return _cos_taylor(_2PI - x);
}
double tan(double x) {
return sin(x)/cos(x);
}
// for sqrt and the inverse trigonometric functions, we use Newton's method
// https://en.wikipedia.org/wiki/Newton%27s_method
double sqrt(double x) {
if (x < 0.0) {
errno = EDOM;
return _NAN;
}
if (x == 0.0) return 0.0;
if (x == _INFINITY) return _INFINITY;
// we want to find the root of: f(t) = t² - x
// f'(t) = 2t
int exp;
double y = frexp(x, &exp);
if (exp & 1) {
y *= 2;
--exp;
}
// newton's method will be slow for very small or very large numbers.
// so we have ensured that
// 0.5 ≤ y < 2
// and also x = y * 2^exp; sqrt(x) = sqrt(y) * 2^(exp/2) NB: we've ensured that exp is even
// 7 iterations seems to be more than enough for any number
double t = y;
t = (y / t + t) * 0.5;
t = (y / t + t) * 0.5;
t = (y / t + t) * 0.5;
t = (y / t + t) * 0.5;
t = (y / t + t) * 0.5;
t = (y / t + t) * 0.5;
t = (y / t + t) * 0.5;
return ldexp(t, exp>>1);
}
double _acos_newton(double x) {
// we want to find the root of: f(t) = cos(t) - x
// f'(t) = -sin(t)
double t = _HALF_PI - x; // reasonably good first approximation
double prev_t = -100.0;
int i;
for (i = 0; i < 100 && prev_t != t; ++i) {
prev_t = t;
t += (cos(t) - x) / sin(t);
}
return t;
}
double _asin_newton(double x) {
// we want to find the root of: f(t) = sin(t) - x
// f'(t) = cos(t)
double t = x; // reasonably good first approximation
double prev_t = -100.0;
int i;
for (i = 0; i < 100 && prev_t != t; ++i) {
prev_t = t;
t += (x - sin(t)) / cos(t);
}
return t;
}
double acos(double x) {
if (x > 1.0 || x < -1.0) {
errno = EDOM;
return _NAN;
}
// Newton's method doesn't work well near -1 and 1, because f(x) / f'(x) is very large.
if (x > 0.8)
return _asin_newton(sqrt(1-x*x));
if (x < -0.8)
return _PI-_asin_newton(sqrt(1-x*x));
return _acos_newton(x);
}
double asin(double x) {
if (x > 1.0 || x < -1.0) {
errno = EDOM;
return _NAN;
}
// Newton's method doesn't work well near -1 and 1, because f(x) / f'(x) is very large.
if (x > 0.8)
return _acos_newton(sqrt(1.0-x*x));
if (x < -0.8)
return -_acos_newton(sqrt(1.0-x*x));
return _asin_newton(x);
}
double atan(double x) {
// the formula below breaks for really large inputs; tan(10^20) as a double is indistinguishable from pi/2 anyways
if (x > 1e20) return _HALF_PI;
if (x < -1e20) return -_HALF_PI;
// we can use a nice trigonometric identity here
return asin(x / sqrt(1+x*x));
}
double atan2(double y, double x) {
if (x == 0.0) {
if (y > 0.0) return _HALF_PI;
if (y < 0.0) return -_HALF_PI;
return 0.0; // this is what IEEE 754 does
}
double a = atan(y/x);
if (x > 0.0) {
return a;
} else if (y > 0.0) {
return a + _PI;
} else {
return a - _PI;
}
}
double _exp_taylor(double x) {
double i;
double term = 1.0;
// taylor expansion for exp: 1 + x/1! + x²/2! + ...
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
double prev = -1.0;
double sum = 0.0;
double c = 0.0;
for (i = 1.0; i < 100.0 && sum != prev; ++i) {
prev = sum;
double y = term - c;
double t = sum + y;
c = (t - sum) - y;
sum = t;
term *= x / i;
}
return sum;
}
double exp(double x) {
if (x > 709.782712893384) {
errno = ERANGE;
return _INFINITY;
}
if (x == 0.0) return 1;
if (x < -744.4400719213812)
return 0;
int i, e;
double y = frexp(x, &e);
if (e < 1.0) return _exp_taylor(x);
// the taylor series doesn't work well for large x (positive or negative),
// so we use the fact that exp(y*2^e) = exp(y)^(2^e)
double value = _exp_taylor(y);
for (i = 0; i < e; ++i)
value *= value;
return value;
}
#define _LOG2 0.6931471805599453
double log(double x) {
if (x < 0.0) {
errno = EDOM;
return _NAN;
}
if (x == 0.0) return -_INFINITY;
if (x == 1.0) return 0.0;
int e;
double sum;
double a = frexp(x, &e);
// since x = a * 2^e, log(x) = log(a) + log(2^e) = log(a) + e log(2)
sum = e * _LOG2;
// now that a is in [1/2,1), the series log(a) = (a-1) - (a-1)²/2 + (a-1)³/3 - ... converges quickly
a -= 1;
// https://en.wikipedia.org/wiki/Kahan_summation_algorithm
double prev = HUGE_VAL;
double c = 0;
double term = a;
double i;
for (i = 1.0; i < 100.0 && sum != prev; ++i) {
prev = sum;
double y = term / i - c;
double t = sum + y;
c = (t - sum) - y;
sum = t;
term *= -a;
}
return sum;
}
#define _INVLOG10 0.43429448190325176 // = 1/log(10)
double log10(double x) {
return log(x) * _INVLOG10;
}
double modf(double value, double *iptr) {
double m = fmod(value, 1.0);
if (value >= 0.0) {
*iptr = value - m;
return m;
} else if (m == 0.0) {
*iptr = value;
return 0.0;
} else {
*iptr = value - m + 1.0;
return m - 1.0;
}
}
// double raised to the power of an integer
double _dpowi(double x, unsigned long y) {
double result = 1.0;
if (y & 1) {
--y;
result *= x;
}
if (y > 0) {
double p = _dpowi(x, y >> 1);
result *= p * p;
}
return result;
}
double pow(double x, double y) {
if (x > 0.0) {
return exp(y * log(x));
} else if (x < 0.0) {
if (fmod(y, 1.0) != 0) {
errno = EDOM;
return _NAN;
}
if (y > 1.6602069666338597e+19)
return x < -1. ? -_INFINITY : 0.;
if (y < -1.6602069666338597e+19)
return x < -1. ? 0. : -_INFINITY;
return _dpowi(x, (unsigned long)y);
} else {
if (y < 0) {
errno = EDOM;
return _NAN;
}
if (y > 0) {
// 0^x = 0 for x>0
return 0.;
}
// 0^0 = 1
return 1.;
}
}
double cosh(double x) {
double e = exp(x);
return (e + 1./e) * 0.5;
}
double sinh(double x) {
double e = exp(x);
return (e - 1./e) * 0.5;
}
double tanh(double x) {
if (x > 20.0) return 1.;
if (x < -20.0) return -1.;
double e = exp(x);
double f = 1./e;
return (e - f) / (e + f);
}
#endif // _MATH_H